Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Hình vẽ:
b. Vì điểm $A$ thuộc đths nên $A$ có tọa độ $(a,3a)$
$OA=\sqrt{a^2+(3a)^2}=2\sqrt{10}$
$\sqrt{10a^2}=2\sqrt{10}$
$10a^2=400$
$a=\pm 2$
Vậy tọa độ điểm A là $(2,6)$ hoặc $(-2,-6)$
a) Hàm số nghịch biến trên R <=> a < 0
<=> 2m - 1 < 0
<=> 2m < 1
<=> m < 1/2
b) Gọi điểm bị cắt là A ( x;y )
cắt trục hoành tại điểm có tọa độ -1
=> x = -1 ; y = 0
=> A ( -1 ; 0 )
Ta có y = ( 2m - 1)x + m - 1 cắt A ( -1;0 )
=> 0 = ( 2m -1 ). ( -1 ) + m - 1
<=> -2m + 1 + m - 1 =0
<=> -m = 0
<=> m = 0
Vậy khi m = 0 thì đồ thị của hàm số cắt trục hoành tại điểm có hoành độ -1
c) y x 0 1 4 M ( 1;4 ) y=(2m............ -1 E F H
Vì đồ thị của hàm số ( đtchs ) đi qua M(1;4) nên thay điểm M vào đtchs ta được:
4 = ( 2m - 1).1+m - 1
<=> 4 = 2m - 1 + m - 1
<=> 4 = 3m - 2
<=> 6 = 3m
<=> m = 2 ( 1 )
Gọi \(E\left(x_E;y_E\right)\)là điểm nằm trên trục tung vào được đtchs đi qua
Và ta có \(x_E=0\) ( vì xE trùng với góc tọa độ ) ( 2 )
Thay ( 1 ) và ( 2 ) vào đtchs ta được:
y = ( 2 . 2 - 1 ). 0 + 2 - 1
y = 2 - 1
y = 1
Áp dụng hệ thức lượng vào tam giác OEF vuông tại O
\(\frac{1}{OH^2}=\frac{1}{OE^2}+\frac{1}{OF^2}\)
\(\Leftrightarrow\frac{1}{OH^2}=\frac{1}{1^2}+\frac{1}{\left(-1\right)^2}\)
\(\Leftrightarrow\frac{1}{OH^2}=2\)
\(\Leftrightarrow2OH^2=1\)
\(\Leftrightarrow OH^2=\frac{1}{2}\)
\(\Leftrightarrow\orbr{\begin{cases}OH=\frac{\sqrt{2}}{2}\left(nhận\right)\\OH=-\frac{\sqrt{2}}{2}\left(loại\right)\end{cases}}\) ( loại -v2/2 vì độ dài không có giá trị âm )
Vậy khoảng cách từ gốc tọa độ O đến đường thẳng đó là \(\frac{\sqrt{2}}{2}\)
HỌC TỐT !!!!
1, \(x=13-4\sqrt{10}=\frac{26-8\sqrt{10}}{2}=\frac{10-2.4.\sqrt{10}+16}{2}=\frac{\left(\sqrt{10}-4\right)^2}{2}\)
Ta có: \(Q=x+\sqrt{5x}-2\sqrt{2x}-2\sqrt{10}\)
\(=\sqrt{x}\left(\sqrt{x}+\sqrt{5}\right)-2\sqrt{2}\left(\sqrt{x}+\sqrt{5}\right)\)
\(=\left(\sqrt{x}+\sqrt{5}\right)\left(\sqrt{x}-2\sqrt{2}\right)\)
\(=\left(\frac{4-\sqrt{10}}{\sqrt{2}}+\sqrt{5}\right)\left(\frac{4-\sqrt{10}}{\sqrt{2}}-2\sqrt{2}\right)\)
\(=\left(2\sqrt{2}-\sqrt{5}+\sqrt{5}\right)\left(2\sqrt{2}-\sqrt{5}-2\sqrt{2}\right)\)
\(=2\sqrt{2}.\left(-\sqrt{5}\right)=-2\sqrt{10}\)
2, a, Để đồ thị h/s đi qua gốc tọa độ thì x=y=0
Ta có: \(-2m-1=0\Leftrightarrow m=\frac{-1}{2}\)
b, giao điểm của h/s y=x-2m-1 với trục hoành A(2m+1;0) với trục tung B(0;-2m-1)
Có: OA=2m+1; OB=|-2m-1|=2m+1
Áp dụng hệ thức lượng trong tam giác vuông coS:
\(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{1}{\left(2m+1\right)^2}+\frac{1}{\left(2m+1\right)^2}=\frac{2}{\left(2m+1\right)^2}\)
\(\Leftrightarrow\frac{\left(2m+1\right)^2}{2}=\left(\frac{\sqrt{2}}{2}\right)^2=\frac{1}{2}\)
\(\Leftrightarrow\left(2m+1\right)^2=1\Leftrightarrow\orbr{\begin{cases}2m+1=1\\2m+1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}m=0\\m=-1\end{cases}}}\)
c, Hoành độ trung điểm I của AB là: \(x_I=\frac{x_A+x_B}{2}=\frac{2m+1}{2}\)
Tung độ trung điểm I của AB: \(y_I=\frac{y_A+y_B}{2}=\frac{-\left(2m+1\right)}{2}\)
Ta có: \(y_I=-x_I\)=> quỹ tích trung điểm I của AB là đường thẳng y=-x
a,
b, Giả sử điểm A có tọa độ \(A\left(x_0;y_0\right)\)
Ta có \(OA=\sqrt{x_0^2+y_0^2}=2\sqrt{10}\Leftrightarrow x_0^2+y_0^2=40\)
\(\Leftrightarrow x_0^2+9x_0^2=40\)
\(\Leftrightarrow x_0=\pm2\)
\(x_0=2\Rightarrow y_0=6\Rightarrow A\left(2;6\right)\)
\(x_0=-2\Rightarrow y_0=-6\Rightarrow A\left(-2;-6\right)\)
a) Hàm số đã cho là y = 2x + b.
Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.
Vậy hàm số đã cho là y = 2x - 3.
b) Hàm số đã cho là y = 3x + b.
Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.
Vậy hàm số đã cho là y = 3x - 4.
c) Vì đồ thị của hàm số đã cho song song với đường thẳng y = √3x nên nó có hệ số góc là a = √3. Do đó hàm số đã cho là y = √3x + b.
Vì đồ thị đi qua điểm B(1; √3 + 5) nên √3 + 5 = √3 . 1 + b. Suy ra b = 5.
Vậy hàm số đã cho là y = √3x + 5.
Bài giải:
a) Hàm số đã cho là y = 2x + b.
Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.
Vậy hàm số đã cho là y = 2x - 3.
b) Hàm số đã cho là y = 3x + b.
Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.
Vậy hàm số đã cho là y = 3x - 4.
c) Vì đồ thị của hàm số đã cho song song với đường thẳng y = √3x nên nó có hệ số góc là a = √3. Do đó hàm số đã cho là y = √3x + b.
Vì đồ thị đi qua điểm B(1; √3 + 5) nên √3 + 5 = √3 . 1 + b. Suy ra b = 5.
Vậy hàm số đã cho là y = √3x + 5
b/ Vì A thuộc hàm số nên tọa độ A(t; - 3t)
Theo đề bài thì ta có
t2 + 9t2 = 10
<=> t2 = 1
<=> t = (1; - 1)
Vậy tọa độ A(1; - 3) hoặc A(- 1; 3)
Câu này câu a/ vẽ đồ thị nên bạn tự làm nhé