K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2017

Đáp án: B.

Vì a < 0 và y' = 0 có ba nghiệm phân biệt nên hàm số y = a x 4  + b x 2  + c có hai cực đại, một cực tiểu.

Ở đây y' = -4 x 3 + 8x; y' = 0 ⇔ -4x( x 2  - 2) = 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

25 tháng 11 2018

Đáp án: B.

Vì a < 0 và y' = 0 có ba nghiệm phân biệt nên hàm số y = a x 4  + b x 2  + c có hai cực đại, một cực tiểu.

Ở đây y' = -4 x 3  + 8x; y' = 0 ⇔ -4x( x 2  - 2) = 0

 

 Giải sách bài tập Toán 12 | Giải sbt Toán 12

9 tháng 12 2018

Đáp án B

30 tháng 1 2017

Đáp án : B.

Hướng dẫn: Tính đạo hàm và lập bảng biến thiên.

NV
6 tháng 10 2021

\(y'=4x^3-4mx=4x\left(x^2-m\right)\)

Hàm có cực đại, cực tiểu khi \(m>0\), khi đó ta có tọa độ các cực trị:

\(A\left(0;m^4+2m\right)\) ; \(B\left(-\sqrt{m};m^4-m^2+2m\right)\) ; \(C\left(\sqrt{m};m^4-m^2+2m\right)\)

3 cực trị luôn tạo thành 1 tam giác cân tại A

Gọi H là trung điểm BC \(\Rightarrow H\left(0;m^4-m^2+2m\right)\)

\(\Rightarrow AH=m^2\) ; \(BC=2\sqrt{m}\)

Tam giác ABC đều khi:

\(AH=\dfrac{BC\sqrt{3}}{2}\) \(\Rightarrow m^2=\sqrt{3m}\)

\(\Rightarrow m^4=3m\Rightarrow m=\sqrt[3]{3}\)

DD
11 tháng 8 2021

\(y=x^4-2\left(m^2-m+1\right)x+m-1\)

\(y'=4x^3-4\left(m^2-m+1\right)x\)

\(y'=0\Leftrightarrow4x^3-4\left(m^2-m+1\right)x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{m^2-m+1}\end{cases}}\)

Khoảng cách giữa hai điểm cực tiểu là: 

\(2\sqrt{m^2-m+1}=2\sqrt{\left(m-\frac{1}{2}\right)^2+\frac{3}{4}}\ge2\sqrt{\frac{3}{4}}\)

Dấu \(=\)khi \(m-\frac{1}{2}=0\Leftrightarrow m=\frac{1}{2}\).

10 tháng 11 2018

Đáp án C.

Hàm số bậc 4 có hai điểm cực đại và một điểm cực tiểu 

15 tháng 3 2018

Ta có 

Suy ra đồ thị có hai điểm cực tiểu là  A - m 2 - m + 1 ; y C T và  B m 2 - m + 1 ; y C T

Khi đó 

Dấu  xảy ra khi m=1/2.

Chọn B.

25 tháng 9 2019

a. Hàm số y = -2x + 1 có đồ thị là đường thẳng => Không có cực trị  ( điều này hiển nhiên )

b) \(y=f\left(x\right)=\frac{x}{3}\left(x-3\right)^2\)

Có: 

\(y'=f'\left(x\right)=\frac{1}{3}.\left(x-3\right)^2+\frac{x}{3}.2.\left(x-3\right)=\frac{1}{3}\left(x-3\right)\left(x-3+2x\right)=\left(x-3\right)\left(x-1\right)\)

\(f''\left(x\right)=x-1+x-3=2x-4\)

+) \(f'\left(x\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

+) Với x =3 có: \(f''\left(3\right)=2.3-4=2>0\)=> y = f ( x ) đạt cực tiểu tại x = 3.

+ Với x = 1 có: \(f''\left(1\right)=2.1-4=-1< 0\)=> y = f ( x ) đạt cực đại tại x =1

Còn có nhiều cách khác nữa: Vẽ đồ thị, vẽ bảng biến thiên,...

hay vải chưởng đè sai mà bn vẫn làm được

23 tháng 4 2016

Ta có : \(y'=3x^2-6x+m^2\Rightarrow y'=0\Leftrightarrow3x^2-6x+m^2=0\left(1\right)\)

Hàm số có cực trị \(\Leftrightarrow\left(1\right)\) có 2 nghiệm phân biệt \(x_1;x_2\)

                           \(\Leftrightarrow\Delta'=3\left(3-m^2\right)>0\Leftrightarrow-\sqrt{3}< m< \sqrt{3}\)

Phương trình đường thẳng d' đi qua các điểm cực trị là : \(y=\left(\frac{2}{3}m^2-2\right)x+\frac{1}{3}m^2\)

=> Các điểm cực trị là :

\(A\left(x_1;\left(\frac{2}{3}m^2-2\right)x_1+\frac{1}{3}m^2+3m\right);B\left(x_2;\left(\frac{2}{3}m^2-2\right)x_2+\frac{1}{3}m^2+3m\right);\)

Gọi I là giao điểm của hai đường thẳng d và d' :

\(\Rightarrow I\left(\frac{2m^2+6m+15}{15-4m^2};\frac{11m^2+3m-30}{15-4m^2}\right)\)

A và B đối xứng đi qua d thì trước hết \(d\perp d'\Leftrightarrow\frac{2}{3}m^2-2=-2\Leftrightarrow m=0\)

Khi đó \(I\left(1;-2\right);A\left(x_1;-2x_1\right);B\left(x_2;-2x_2\right)\Rightarrow I\) là trung điểm của AB=> A và B đối xứng nhau qua d

Vậy m = 0 là giá trị cần tìm