Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta thấy \(\sqrt{3}-2< 0\) nên hàm số trên nghịch biến trên R
b)
\(\sqrt{3}-7=\left(\sqrt{3}-2\right)x+5\)
\(\Leftrightarrow\sqrt{3}-12=\left(\sqrt{3}-2\right)x\)
\(\Leftrightarrow x=\dfrac{\sqrt{3}-12}{\sqrt{3}-2}\)
\(\text{Ta có:}-m^2+m-4\\ =-\left(m^2-m+4\right)\\ =-\left[\left(m^2-m+\dfrac{1}{4}\right)+\dfrac{15}{4}\right]\\ =-\left(m-\dfrac{1}{2}\right)^2-\dfrac{15}{4}\le-\dfrac{15}{4}< 0\)
Vậy HSNB trên R
\(-m^2+m-4\)
\(=-\left(m^2-m+4\right)\)
\(=-\left(m^2-m+\dfrac{1}{4}+\dfrac{15}{4}\right)\)
\(=-\left(m-\dfrac{1}{2}\right)^2-\dfrac{15}{4}< 0\forall m\)
Vậy: Hàm số nghịch biến trên R
Vì \(\sqrt{2}-1=\sqrt{2}-\sqrt{1}>0\)
nên hàm số \(y=\left(\sqrt{2}-1\right)x-3\) đồng biến trên R
Hàm số y =(\(\sqrt{ }\)2 -1)x-3 là đồng biến trên R. Vì Hàm số trên có tính chất :
- Đồng biên trên R với a > 0
- Nghịch biến trên R với a < 0
a: Hàm số này đồng biến vì \(2-\sqrt{3}>0\)
b: \(f\left(2+\sqrt{3}\right)=4-3-1=0\)
\(f\left(\sqrt{3}\right)=2\sqrt{3}-3-1=2\sqrt{3}-4\)
Hàm số y = (3 - 2 )x + 1 có hệ số a = 3 - 2 , hệ số b = 1
Ta có: a = 3 - 2 > 0 nên hàm số đồng biến trên R