Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: Thay x=1 và y=1 vào hàm số, ta được:
y=2x1-3=-1<>1
Vậy: Điểm M ko thuộc đồ thị
b: Hàm số đồng biến vì a=2>0
Lời giải:
a. Vì $(d)$ đi qua $M(3;1)$ nên:
$y_M=(2-a)x_M+a$
$\Leftrightarrow 1=(2-a).3+a\Rightarrow a=2,5$
Khi đó: $y=(2-2,5)x+2,5=-0,5x+2,5$
Vì $-0,5<0$ nên hàm nghịch biến trên R.
b.
$y_A=3$
$-0,5x_A+2,5=-0,5.(-1)+2,5=3$
$\Rightarrow y_A=-0,5x_A+2,5$ nên điểm $A\in (d)$
c. Gọi PTĐT $(d')$ là: $y=mx+n$ với $m,n$ là số thực
$(d')\parallel (d)$ nên $m=-0,5$
$M(3;1), N(-1,5)\Rightarrow$ tọa độ trung điểm $I$ của $MN$ là:
$(\frac{3-1}{2}; \frac{1+5}{2})=(1,3)$
$(d')$ đi qua $(1,3)$ nên:
$3=m.1+n\Rightarrow m+n=3\Rightarrow n=3-m=3-(-0,5)=3,5$
Vậy PTĐT $(d')$ là: $y=-0,5x+3,5$
1: (D): y=(m-2)x+1
(D'): \(y=m^2x-2x+m=x\left(m^2-2\right)+m\)
Để (D) là hàm số bậc nhất thì m-2<>0
=>m<>2
Để (D): y=(m-2)x+1 đồng biến trên R thì m-2>0
=>m>2
Để (D): y=(m-2)x+1 nghịch biến trên R thì m-2<0
=>m<2
2: Để (D)//(D') thì \(\left\{{}\begin{matrix}m^2-2=m-2\\m< >1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2-m=0\\m< >1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\left(m-1\right)=0\\m< >1\end{matrix}\right.\)
=>m=0
3:
a: Khi m=0 thì (D): y=(0-2)x+1=-x+1
b: Gọi \(\alpha\) là góc tạo bởi (D) với trục Ox
Ta có: a=-1
nên \(tan\left(180^0-\alpha\right)=-1\)
=>\(180-\alpha=135^0\)
=>\(\alpha=45^0\)
4:
Tọa độ giao điểm của (d1) và (d2) là:
\(\left\{{}\begin{matrix}2x-8=-x+1\\y=2x-8\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x=9\\y=2x-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\cdot3-8=-2\end{matrix}\right.\)
Thay x=3 và y=-2 vào (D), ta được:
\(3\left(m-2\right)+1=-2\)
=>3(m-2)=-3
=>m-2=-1
=>m=1
5: Để (D) cắt (D') tại một điểm trên trục hoành thì
\(\left\{{}\begin{matrix}m-2< >m^2-2\\-\dfrac{1}{m-2}=\dfrac{-m}{m^2-2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2-m\ne0\\\dfrac{1}{m-2}=\dfrac{m}{m^2-2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\left(m-1\right)\ne0\\m^2-2=m^2-2m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\notin\left\{0;1\right\}\\-2m=-2\end{matrix}\right.\)
=>\(m\in\varnothing\)
6: (D): y=(m-2)x+1
=>y=mx-2x+1
Điểm mà (D) luôn đi qua có tọa độ là:
\(\left\{{}\begin{matrix}x=0\\y=-2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-2\cdot0+1=1\end{matrix}\right.\)
1-4 bạn tk ở đây: Cho đường thẳng y=(m-2)x+m-3(d); m≠2. Tìm m biết:1) tìm m để hàm số đồng biến (tạo Ox góc nhọn), nghịch biến( tạo Ox góc... - Hoc24
5. \(m=1\Leftrightarrow y=-x-2\)
PT giao Ox tại A và Oy tại B của đths: \(\left\{{}\begin{matrix}y=0\Rightarrow x=-2\Rightarrow A\left(-2;0\right)\Rightarrow OA=2\\x=0\Rightarrow y=-2\Rightarrow B\left(0;-2\right)\Rightarrow OB=2\end{matrix}\right.\)
Gọi H là chân đường cao từ O tới đths
Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\)
\(\Leftrightarrow OH^2=2\Leftrightarrow OH=\sqrt{2}\)
Vậy k/c từ O đến đt là \(\sqrt{2}\)
Áp dụng PTG: \(AB=\sqrt{OA^2+OB^2}=2\sqrt{2}\)
Vậy \(P_{ABC}=AB+BC+CA=4+2\sqrt{2};S_{ABC}=\dfrac{1}{2}OH\cdot AB=\dfrac{1}{2}\cdot2\sqrt{2}\cdot\sqrt{2}=2\left(đvdt\right)\)
\(1,\) Nhọn \(\Leftrightarrow m-2>0\Leftrightarrow m>2\)
Tù \(\Leftrightarrow m-2< 0\Leftrightarrow m< 2\)
\(2,\Leftrightarrow m-2+m-3=2\Leftrightarrow2m-5=2\Leftrightarrow m=\dfrac{7}{2}\)
\(3,\) PT giao Ox tại B và Oy tại C là \(\left\{{}\begin{matrix}y=0\Rightarrow\left(m-2\right)x=3-m\Rightarrow x=\dfrac{3-m}{m-2}\Rightarrow A\left(\dfrac{3-m}{m-2};0\right)\Rightarrow OA=\left|\dfrac{3-m}{m-2}\right|\\x=0\Rightarrow y=m-3\Rightarrow B\left(0;m-3\right)\Rightarrow OB=\left|m-3\right|\end{matrix}\right.\)
(d) tạo với Ox góc 60 độ là góc nhọn \(\Leftrightarrow m-2>0\Leftrightarrow m>2\)
Và \(\tan60^0=\dfrac{OB}{OA}=\left|m-3\right|\cdot\dfrac{\left|m-2\right|}{\left|3-m\right|}=\left|\dfrac{\left(m-3\right)\left(2-m\right)}{m-3}\right|=\left|2-m\right|\)
\(\Leftrightarrow\left|2-m\right|=\sqrt{3}\)
Mà \(m>2\Leftrightarrow2-m< 0\Leftrightarrow2-m=-\sqrt{3}\Leftrightarrow m=2+\sqrt{3}\)
\(4,\) PT hoành độ giao điểm tại hoành độ 3:
\(\left(m-2\right)x+m-3=2x-3\)
Thay \(x=3\Leftrightarrow3m-6+m-3=3\)
\(\Leftrightarrow4m=12\Leftrightarrow m=3\)
\(a,\Leftrightarrow3m-1=-2\Leftrightarrow m=-\dfrac{1}{3}\Leftrightarrow\left(d\right):y=-\dfrac{1}{3}x-1\\ c,\text{Hs góc: }-\dfrac{1}{3}\\ \text{Gọi góc cần tìm là }\alpha>90^0\\ \Leftrightarrow\tan\left(180^0-\alpha\right)=\dfrac{1}{3}\approx\tan18^0\\ \Leftrightarrow\alpha\approx180^0-18^0=162^0\)