Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,y=\left(m-2\right)x+3+1\) \(\left(d\right)\)
\(\left(d\right)\) đi qua \(A\left(1;-1\right)\)
\(\Rightarrow-1=m-2+m+1\)
\(\Rightarrow m=0\)
\(2,y=1-3x\left(d'\right)\)
Để: \(\left(d\right)//\left(d'\right)\)
\(\Leftrightarrow\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\Leftrightarrow\hept{\begin{cases}m-2=-3\\m+1\ne1\end{cases}}\Leftrightarrow\hept{\begin{cases}m=-1\\m\ne0\end{cases}}\)
\(3,\) Gọi \(A\) là giao điểm của \(\left(d\right)\) với \(Ox\)
\(B\) là giao điểm của \(\left(d\right)\) với \(Oy\)
Tọa độ \(A:\hept{\begin{cases}\left(m-2\right)x+m+1=0\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{m+1}{2-m}\\y=0\end{cases}}\)
Tọa độ \(B:\hept{\begin{cases}x=0\\m+1=y\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=m+1\end{cases}}\)
Độ dài \(OA:\sqrt{\left(\frac{m+1}{2-m}\right)^2}=|\frac{m+1}{2-m}|\)
Độ dài \(OB:\sqrt{\left(m+1\right)^2}=|m+1|\)
Kẻ \(OH\perp AB\) ta được: \(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\)
\(\Leftrightarrow1=\frac{1}{\left(\frac{m+1}{2-m}\right)^2}+\frac{1}{\left(m+1\right)^2}\)
\(\Leftrightarrow1=\frac{\left(2-m\right)^2}{\left(m+1\right)^2}+\frac{1}{\left(m+1\right)^2}\)
\(\Leftrightarrow\left(m+1\right)^2=m^2-4m+4+1\)
\(\Leftrightarrow m^2+2m+1=m^2-4m+5\)
\(\Leftrightarrow m=\frac{2}{3}\)
\(a)\) Hàm số \(y=\left(2-3m\right)x+2m-5\)đồng biến
\(\Leftrightarrow2-3m>0\)
\(\Leftrightarrow3m< 2\)
\(\Leftrightarrow m< \frac{2}{3}\)
Vậy với giá trị \(m< \frac{2}{3}\)thì hàm số trên đồng biến
\(b)\) \(\left(d\right)\)đi qua gốc tọa độ
\(\Leftrightarrow\)Hàm số \(y=\left(2-3m\right)x+2m-5\)có dạng \(y=ax\)
\(\Leftrightarrow2m-5=0\)
\(\Leftrightarrow2m=5\)
\(\Leftrightarrow m=\frac{5}{2}\)
Vậy \(m=\frac{5}{2}\)
\(c)\) Vì đths đi qua \(A\left(1;1\right)\)
\(\Rightarrow\)Thay \(x=1;y=1\)vào hàm số \(y=\left(2-3m\right)x+2m-5\)
Có: \(\left(2-3m\right).1+2m-5=1\)
\(\Leftrightarrow2-3m+2m-5=1\)
\(\Leftrightarrow-3-m=1\)
\(\Leftrightarrow m=-4\)
Vậy \(m=-4\)
\(d)\) Pt hoành độ giao điểm thỏa mãn:
\(2x-1=x-2\)
\(\Leftrightarrow x=-1\)
\(\Leftrightarrow y=x-2\)
\(\Leftrightarrow y=-3\)
Để \(\left(d\right);y=2x-1;y=x-2\)đồng quy thì:
\(A\left(-1;-3\right)\in d\)
\(\Leftrightarrow\left(2-3m\right)\left(-1\right)+2m-5=-3\)
\(\Leftrightarrow-2+3m+2m-5=-3\)
\(\Leftrightarrow-7+5m=-3\)
\(\Leftrightarrow5m=4\)
\(\Leftrightarrow m=\frac{4}{5}\)
\(e)\) Vì \(\left(d\right)\)cắt trục \(Oy\)tại điểm có tung độ \(=-1\)
\(\Rightarrow\left(0;-1\right)\in\left(d\right)\)
Thay \(x=0;y=-1\)vào hàm số
Có: \(\left(2-3m\right).0+2m-5=-1\)
\(\Leftrightarrow2m-5=-1\)
\(\Leftrightarrow2m=4\)
\(\Leftrightarrow m=2\)
Vậy \(m=2\)
\(f)\) Đths \(y=\left(2-3m\right)x+2m-5\)đi qua gốc tọa độ
\(\Leftrightarrow2m-5=0\)
\(\Leftrightarrow2m=5\)
\(\Leftrightarrow m=\frac{5}{2}\)
Mà đths \(y=\left(2-3m\right)x+2m-5\)\(\in\)góc phần tư \(\left(II\right),\left(IV\right)\)
\(\Leftrightarrow2-3m< 0\)
\(\Leftrightarrow3m>2\)
\(\Leftrightarrow m>\frac{2}{3}\)
Ta có \(m=\frac{5}{2}\)(tmđk \(m>\frac{2}{3}\))
Vậy \(m=\frac{5}{2}\)
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
\(a,\Leftrightarrow A\left(0;0\right)\in\left(d\right)\Leftrightarrow-2m+1=0\Leftrightarrow m=\dfrac{1}{2}\\ b,\Leftrightarrow x=3;y=4\Leftrightarrow3\left(m+1\right)-2m+1=4\\ \Leftrightarrow3m+3-2m+1=4\\ \Leftrightarrow m=0\Leftrightarrow\left(d\right):y=x+1\\ c,\text{PT hoành độ giao điểm: }x+1=-2x+4\Leftrightarrow x=1\Leftrightarrow y=2\Leftrightarrow B\left(1;2\right)\\ \text{Vậy }B\left(1;2\right)\text{ là giao 2 đths}\)
1: Thay x=1 và y=-1 vào (d), ta được:
\(1\left(m-2\right)+m+1=-1\)
=>2m-1=-1
=>m=0
Khi m=0 thì (d): \(y=\left(0-2\right)x+0+1=-2x+1\)
2: Để (d)//(d') thì \(\left\{{}\begin{matrix}m-2=-3\\m+1< >1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=-1\\m< >0\end{matrix}\right.\)
=>m=-1
3:
(d): y=(m-2)x+m+1
=>(m-2)x-y+m+1=0
Khoảng cách từ O đến (d) là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(m-2\right)+0\cdot\left(-1\right)+m+1\right|}{\sqrt{\left(m-2\right)^2+\left(-1\right)^2}}=\dfrac{\left|m+1\right|}{\sqrt{\left(m-2\right)^2+1}}\)
Để d(O;(d))=1 thì \(\dfrac{\left|m+1\right|}{\sqrt{\left(m-2\right)^2+1}}=1\)
=>\(\sqrt{\left(m-2\right)^2+1}=\sqrt{\left(m+1\right)^2}\)
=>\(\left(m-2\right)^2+1=\left(m+1\right)^2\)
=>\(m^2-4m+4+1=m^2+2m+1\)
=>-4m+5=2m+1
=>-6m=-4
=>m=2/3(nhận)
a: Để hàm số đồng biến thì 2m-3>0
hay m>3/2
b: Thay x=-2 và y=-3 vào y=(2m-3)x-1, ta được:
-2(2m-3)-1=-3
=>-2(2m-1)=-2
=>2m-1=1
hay m=1