K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2020

\(1,y=\left(m-2\right)x+3+1\)      \(\left(d\right)\)

\(\left(d\right)\) đi qua \(A\left(1;-1\right)\)

\(\Rightarrow-1=m-2+m+1\)

\(\Rightarrow m=0\)

\(2,y=1-3x\left(d'\right)\)

Để: \(\left(d\right)//\left(d'\right)\)

\(\Leftrightarrow\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\Leftrightarrow\hept{\begin{cases}m-2=-3\\m+1\ne1\end{cases}}\Leftrightarrow\hept{\begin{cases}m=-1\\m\ne0\end{cases}}\)

\(3,\) Gọi \(A\) là giao điểm của \(\left(d\right)\) với \(Ox\)

\(B\) là giao điểm của \(\left(d\right)\) với \(Oy\)

Tọa độ \(A:\hept{\begin{cases}\left(m-2\right)x+m+1=0\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{m+1}{2-m}\\y=0\end{cases}}\)

Tọa độ \(B:\hept{\begin{cases}x=0\\m+1=y\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=m+1\end{cases}}\)

Độ dài \(OA:\sqrt{\left(\frac{m+1}{2-m}\right)^2}=|\frac{m+1}{2-m}|\)

Độ dài \(OB:\sqrt{\left(m+1\right)^2}=|m+1|\)

Kẻ \(OH\perp AB\) ta được: \(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\) 

\(\Leftrightarrow1=\frac{1}{\left(\frac{m+1}{2-m}\right)^2}+\frac{1}{\left(m+1\right)^2}\)

\(\Leftrightarrow1=\frac{\left(2-m\right)^2}{\left(m+1\right)^2}+\frac{1}{\left(m+1\right)^2}\)

\(\Leftrightarrow\left(m+1\right)^2=m^2-4m+4+1\)

\(\Leftrightarrow m^2+2m+1=m^2-4m+5\)

\(\Leftrightarrow m=\frac{2}{3}\)

24 tháng 1 2020

\(a)\) Hàm số \(y=\left(2-3m\right)x+2m-5\)đồng biến 

\(\Leftrightarrow2-3m>0\)

\(\Leftrightarrow3m< 2\)

\(\Leftrightarrow m< \frac{2}{3}\)

Vậy với giá trị \(m< \frac{2}{3}\)thì hàm số trên đồng biến

\(b)\)  \(\left(d\right)\)đi qua gốc tọa độ

\(\Leftrightarrow\)Hàm số \(y=\left(2-3m\right)x+2m-5\)có dạng \(y=ax\)

\(\Leftrightarrow2m-5=0\)

\(\Leftrightarrow2m=5\)

\(\Leftrightarrow m=\frac{5}{2}\)

Vậy \(m=\frac{5}{2}\)

\(c)\) Vì đths đi qua \(A\left(1;1\right)\)

\(\Rightarrow\)Thay \(x=1;y=1\)vào hàm số \(y=\left(2-3m\right)x+2m-5\)

Có: \(\left(2-3m\right).1+2m-5=1\)

\(\Leftrightarrow2-3m+2m-5=1\)

\(\Leftrightarrow-3-m=1\)

\(\Leftrightarrow m=-4\)

Vậy \(m=-4\)

\(d)\) Pt hoành độ giao điểm thỏa mãn:

\(2x-1=x-2\)

\(\Leftrightarrow x=-1\)

\(\Leftrightarrow y=x-2\)

\(\Leftrightarrow y=-3\)

Để \(\left(d\right);y=2x-1;y=x-2\)đồng quy thì:

\(A\left(-1;-3\right)\in d\)

\(\Leftrightarrow\left(2-3m\right)\left(-1\right)+2m-5=-3\)

\(\Leftrightarrow-2+3m+2m-5=-3\)

\(\Leftrightarrow-7+5m=-3\)

\(\Leftrightarrow5m=4\)

\(\Leftrightarrow m=\frac{4}{5}\)

\(e)\) Vì \(\left(d\right)\)cắt trục \(Oy\)tại điểm có tung độ \(=-1\)

\(\Rightarrow\left(0;-1\right)\in\left(d\right)\)

Thay \(x=0;y=-1\)vào hàm số

Có: \(\left(2-3m\right).0+2m-5=-1\)

\(\Leftrightarrow2m-5=-1\)

\(\Leftrightarrow2m=4\)

\(\Leftrightarrow m=2\)

Vậy \(m=2\)

\(f)\) Đths \(y=\left(2-3m\right)x+2m-5\)đi qua gốc tọa độ 

\(\Leftrightarrow2m-5=0\)

\(\Leftrightarrow2m=5\)

\(\Leftrightarrow m=\frac{5}{2}\)

Mà đths \(y=\left(2-3m\right)x+2m-5\)\(\in\)góc phần tư \(\left(II\right),\left(IV\right)\)

\(\Leftrightarrow2-3m< 0\)

\(\Leftrightarrow3m>2\)

\(\Leftrightarrow m>\frac{2}{3}\)

Ta có \(m=\frac{5}{2}\)(tmđk \(m>\frac{2}{3}\))

Vậy \(m=\frac{5}{2}\)

Bài 1 : Cho hàm số y = (m + 5)x+ 2m – 10 Với giá trị nào của m thì y là hàm số bậc nhấtVới giá trị nào của m thì hàm số đồng biến.Tìm m để đồ thị hàm số điqua điểm A(2; 3)Tìm m để đồ thị cắt trục tung tại điểm có tung độ bằng 9.Tìm m để đồ thị đi qua điểm 10 trên trục hoành .Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x -1Chứng minh đồ thị hàm số luôn đi...
Đọc tiếp

Bài 1 : Cho hàm số y = (m + 5)x+ 2m – 10 
Với giá trị nào của m thì y là hàm số bậc nhất
Với giá trị nào của m thì hàm số đồng biến.
Tìm m để đồ thị hàm số điqua điểm A(2; 3)
Tìm m để đồ thị cắt trục tung tại điểm có tung độ bằng 9.
Tìm m để đồ thị đi qua điểm 10 trên trục hoành .
Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x -1
Chứng minh đồ thị hàm số luôn đi qua 1 điểm cố định với mọi m.
Tìm m để khoảng cách từ O tới đồ thị hàm số là lớn nhất
Bài 2: Cho đường thẳng y=2mx +3-m-x (d) . Xác định m để:
Đường thẳng d qua gốc toạ độ 
Đường thẳng d song song với đường thẳng 2y- x =5
Đường thẳng d tạo với Ox một góc nhọn
Đường thẳng d tạo với Ox một góc tù
Đường thẳng d cắt Ox tại điểm có hoành độ 2 
Đường thẳng d cắt đồ thị Hs y= 2x – 3 tại một điểm có hoành độ là 2
Đường thẳng d cắt đồ thị Hs y= -x +7 tại một điểm có tung độ y = 4
Đường thẳng d đi qua giao điểm của hai đường thảng 2x -3y=-8 và y= -x+1
Bài 3: Cho hàm số y=( 2m-3).x+m-5
Vẽ đồ thị với m=6
Chứng minh họ đường thẳng luôn đi qua điểm cố định khi m thay đổi
Tìm m để đồ thị hàm số tạo với 2 trục toạ độ một tam giác vuông cân
Tìm m để đồ thị hàm số tạo với trục hoành một góc 45o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 135o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 30o , 60o
Tìm m để đồ thị hàm số cắt đường thẳng y = 3x-4 tại một điểm trên 0y 
Tìm m để đồ thị hàm số cắt đường thẳng y = -x-3 tại một điểm trên 0x 
Bài4 (Đề thi vào lớp 10 tỉnh Hải Dương năm 2000,2001) Cho hàm số y = (m -2)x + m + 3
a)Tìm điều kiện của m để hàm số luôn luôn nghịch biến .
b)Tìm điều kiện của m để đồ thị cắt trục hoành tại điểm có hoành độ bằng 3.
c)Tìm m để đồ thị hàm số y = -x + 2, y = 2x –1 và y = (m - 2)x + m + 3 đồng quy.
d)Tìm m để đồ thị hàm số tạo với trục

4
6 tháng 1 2019

Bài 1:

Đặt:  (d):  y = (m+5)x + 2m - 10

Để y là hàm số bậc nhất thì:  m + 5 # 0    <=>   m # -5

Để y là hàm số đồng biến thì: m + 5 > 0  <=>  m > -5

(d) đi qua A(2,3) nên ta có:

3 = (m+5).2 + 2m - 10

<=>  2m + 10 + 2m - 10 = 3

<=>  4m = 3

<=> m = 3/4

6 tháng 1 2019

(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:

9 = (m+5).0 + 2m - 10

<=> 2m - 10 = 9

<=>  2m = 19

<=> m = 19/2

(d) đi qua điểm 10 trên trục hoành nên ta có:

0 = (m+5).10 + 2m - 10

<=> 10m + 50 + 2m - 10 = 0

<=>  12m = -40

<=> m = -10/3

(d) // y = 2x - 1  nên ta có:

\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\)   <=>   \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\)  <=>  \(m=-3\)

24 tháng 12 2021

\(a,\Leftrightarrow A\left(0;0\right)\in\left(d\right)\Leftrightarrow-2m+1=0\Leftrightarrow m=\dfrac{1}{2}\\ b,\Leftrightarrow x=3;y=4\Leftrightarrow3\left(m+1\right)-2m+1=4\\ \Leftrightarrow3m+3-2m+1=4\\ \Leftrightarrow m=0\Leftrightarrow\left(d\right):y=x+1\\ c,\text{PT hoành độ giao điểm: }x+1=-2x+4\Leftrightarrow x=1\Leftrightarrow y=2\Leftrightarrow B\left(1;2\right)\\ \text{Vậy }B\left(1;2\right)\text{ là giao 2 đths}\)

28 tháng 11 2023

1: Thay x=1 và y=-1 vào (d), ta được:

\(1\left(m-2\right)+m+1=-1\)

=>2m-1=-1

=>m=0

Khi m=0 thì (d): \(y=\left(0-2\right)x+0+1=-2x+1\)

2: Để (d)//(d') thì \(\left\{{}\begin{matrix}m-2=-3\\m+1< >1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=-1\\m< >0\end{matrix}\right.\)

=>m=-1

3:

(d): y=(m-2)x+m+1

=>(m-2)x-y+m+1=0

Khoảng cách từ O đến (d) là:

\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(m-2\right)+0\cdot\left(-1\right)+m+1\right|}{\sqrt{\left(m-2\right)^2+\left(-1\right)^2}}=\dfrac{\left|m+1\right|}{\sqrt{\left(m-2\right)^2+1}}\)

Để d(O;(d))=1 thì \(\dfrac{\left|m+1\right|}{\sqrt{\left(m-2\right)^2+1}}=1\)

=>\(\sqrt{\left(m-2\right)^2+1}=\sqrt{\left(m+1\right)^2}\)

=>\(\left(m-2\right)^2+1=\left(m+1\right)^2\)

=>\(m^2-4m+4+1=m^2+2m+1\)

=>-4m+5=2m+1

=>-6m=-4

=>m=2/3(nhận)