Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. để hàm số đi qua M(-1,1) thì ta có
\(1=\left(2m-1\right)\times\left(-1\right)+m+1\Leftrightarrow m=1\)
b.Hàm số cắt trụ tung tại điểm \(A\left(0,m+1\right)\)
Hàm số cắt trục hoành tại điểm \(B\left(\frac{-m-1}{2m-1},0\right)\)
Để OAB là tam giác cân thì ta có \(OA=OB\ne0\Leftrightarrow\left|m+1\right|=\left|\frac{-m-1}{2m-1}\right|\ne0\)
\(\Leftrightarrow\left|2m-1\right|=1\Leftrightarrow\orbr{\begin{cases}m=0\\m=1\end{cases}}\)
a, Để đồ thị đi qua điểm M(-1;1) thì ta thay x = -1, y = 1 vào hàm số ta có:
\(1=\left(2m-1\right).\left(-1\right)+m+1\)
=>\(m=1\)
b,\(y=\left(2m-1\right)x+m+1\)
Cho \(x=0=>y=m+1=>OA=|m+1|\)
Cho \(y=0=>x=\frac{-m-1}{2m-1}=>B\left(\frac{-m-1}{2m-1};0\right)\)
\(=>OB=|\frac{-m-1}{2m-1}|=\frac{|m+1|}{|2m-1|}\)
\(\Delta AOB\)cân \(< =>\hept{\begin{cases}OA=OB\\OA>0\end{cases}}< =>\hept{\begin{cases}|m+1|\\|m+1|>0\end{cases}}\)
\(\hept{\begin{cases}|2m-1|\\m\ne-1\end{cases}< =>\hept{\begin{cases}2m-1=1\\2m-1=-1\end{cases}}}< =>\hept{\begin{cases}m=1\\m=0\end{cases}}\)
Vậy với m = 0 hoặc m = 1 thì đồ thị hàm số thỏa mãn yêu cầu của bài toán
a: Bạn bổ sung đề đi bạn
b: thay x=-3 và y=0 vào (d), ta được:
\(-3\left(2m+1\right)-m+3=0\)
=>-6m-3-m+3=0
=>-7m=0
=>m=0
d: y=(2m+1)x-m+3
=2mx+x-m+3
=m(2x-1)+x+3
Tọa độ điểm cố định mà (1) luôn đi qua là:
\(\left\{{}\begin{matrix}2x-1=0\\y=x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=3+\dfrac{1}{2}=\dfrac{7}{2}\end{matrix}\right.\)
a) Để đồ thị hàm số đi qua điểm A(-2;3), ta thay x = -2 và y = 3 vào phương trình hàm số:
3 = (2m+1)(-2) + 3m - 1
Giải phương trình, ta có:
3 = -4m - 2 + 3m - 1
3 = -m - 3
m = -6
b) Để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 2, ta thay x = 2 vào phương trình hàm số:
0 = (2m+1)(2) + 3m - 1
Giải phương trình, ta có:
0 = 4m + 2 + 3m - 1
0 = 7m + 1
m = -1/7
c) Để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 2, ta thay y = 2 vào phương trình hàm số:
2 = (2m+1)x + 3m - 1
2 = (2m+1)x + 3m - 1
(2m+1)x + 3m = 3
d) Để đồ thị hàm số cắt đường thẳng Y = x + 2 tại điểm có hoành độ bằng 3, ta thay x = 3 vào phương trình hàm số và đường thẳng:
(2m+1)(3) + 3m - 1 = 3 + 2
Giải phương trình, ta có:
6m + 4 = 5
m = 1/6
e) Để đồ thị hàm số cắt đường thẳng Y = -x - 3 tại điểm có tung độ bằng -1, ta thay y = -1 vào phương trình hàm số và đường thẳng:
-1 = (2m+1)x + 3m - 1 = -x - 3
(2m+1)x + 3m = -2
g) Để vẽ đồ thị hàm số khi m = 2, ta thay m = 2 vào phương trình hàm số:
Y = (2(2)+1)x + 3(2) - 1
Y = 5x + 5
a: Thay x=-2 và y=3 vào (d), ta được:
-2(2m+1)+3m-1=3
=>-4m-2+3m-1=3
=>-m-3=3
=>m+3=-3
=>m=-6
b: Thay x=2 và y=0 vào (d), ta được:
2(2m+1)+3m-1=0
=>7m+3=0
=>m=-3/7
c: Thay x=0 và y=2 vào (d), ta được:
0(2m+1)+3m-1=2
=>3m-1=2
=>m=1
d: Thay x=3 vào y=x+2, ta được:
y=3+2=5
Thay x=3; y=5 vào (d), ta được:
3(2m+1)+3m-1=5
=>9m+2=5
=>9m=3
=>m=1/3
e: Thay y=-1 vào y=-x-3, ta được:
-x-3=-1
=>x+3=1
=>x=-2
Thay x=-2 và y=-1 vào (d), ta được:
-2(2m+1)+3m-1=-1
=>-4m-2+3m-1=-1
=>-m-3=-1
=>-m=2
=>m=-2
g: Khi m=2 thì (d) sẽ là:
y=(2*2+1)x+3*2-1
=5x+5
a: Thay x=0 và y=3 vào y=(m-1)x+m-5, ta được:
\(0\cdot\left(m-1\right)+m-5=3\)
=>m-5=3
=>m=8
b: Thay x=-1 và y=0 vào y=(m-1)x+m-5, ta được:
\(-\left(m-1\right)+m-5=0\)
=>-m+1+m-5=0
=>-4=0(vô lý)
c: Thay x=0 và y=0 vào y=(m-1)x+m-5, ta được:
\(0\left(m-1\right)+m-5=0\)
=>m-5=0
=>m=5
a: Thay x=2 và y=0 vào y=(m+1)x-1, ta được:
2(m+1)-1=0
=>2(m+1)=1
=>m+1=1/2
=>\(m=\dfrac{1}{2}-1=-\dfrac{1}{2}\)
b: Thay x=0 và y=2 vào y=(m+1)x-1, ta được:
\(0\cdot\left(m+1\right)-1=2\)
=>-1=2(vô lý)
a) Đths y = ax - 4 cắt y = 2x - 1 tại điểm có hoành độ = 2
=> Thay x = 2 vào y = 2x - 1
=> y = 1
=> (1; 1) ∈ y = ax - 4
=> Thay x = 1; y = 1 vào hàm số y = ax - 4
=> a - 4 = 1 => a = 5
b) y = (2m - 3)x + (2m - 1) cắt trục tung tại điểm có tung độ = 46
=> y = (2m - 3)x + (2m - 1) cắt (0 ; 46)
=> Thay x = 0; y = 46 vào hàm số y = (2m - 3)x + (2m - 1)
=> 2m - 1 = 46
=> m = 47/2
\(y=\left(2m-1\right)x+m+1\left(m\ne\dfrac{1}{2}\right)\)
\(x=0\Rightarrow y=m+1\Rightarrow A\left(0;m+1\right)\Rightarrow OA=\left|m+1\right|\)
\(y=0\Rightarrow x=\dfrac{-m-1}{2m-1}=\dfrac{m+1}{1-2m}\Rightarrow B\left(\dfrac{m+1}{1-2m};0\right)\Rightarrow OB=\left|\dfrac{m+1}{1-2m}\right|\)
\(\Delta OAB-cân-tạiO\Leftrightarrow OA=OB>0\Rightarrow\left\{{}\begin{matrix}\left|m+1\right|>0\\\left|\dfrac{m+1}{1-2m}\right|>0\end{matrix}\right.\)\(\Leftrightarrow-1< m< \dfrac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}m+1=\dfrac{m+1}{1-2m}\\m+1=\dfrac{-\left(m+1\right)}{1-2m}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}m=-1\left(ktm\right);m=0\left(tm\right)\\m=1\left(tm\right);m=-1\left(ktm\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m=1\\m=0\end{matrix}\right.\)
PT giao Ox và Oy:
\(\left\{{}\begin{matrix}y=0\Rightarrow\left(2m-1\right)x=-\left(m+1\right)\Rightarrow x=\dfrac{m+1}{1-2m}\Rightarrow A\left(\dfrac{m+1}{1-2m};0\right)\Rightarrow OA=\left|\dfrac{m+1}{1-2m}\right|\\x=0\Rightarrow y=m+1\Rightarrow B\left(0;m+1\right)\Rightarrow OB=\left|m+1\right|\end{matrix}\right.\)
\(\Delta AOB\text{ cân}\\ \Leftrightarrow OA=OB\Leftrightarrow\left|\dfrac{m+1}{1-2m}\right|=\left|m+1\right|\\ \Leftrightarrow\left[{}\begin{matrix}\dfrac{m+1}{1-2m}=m+1\\\dfrac{m+1}{2m-1}=m+1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left(m+1\right)\left(1-2m\right)-\left(m+1\right)=0\\\left(m+1\right)\left(2m-1\right)-\left(m+1\right)=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-2m\left(m+1\right)=0\\\left(m+1\right)\left(2m-2\right)=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m=0\\m=1\\m=-1\end{matrix}\right.\)