Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC đều
D thuộc AB , E thuộc AC sao cho BD = AE
CM : Khi D,E thay đổi ( di chuyển ) trên AB,AC thì đường trung tuyến DE luôn đi qua điểm cố định
Help me !!!
ta có pt đường cao kẻ từ B:(d1) x+3y-5=0
vì AC _|_ (d1) và AC đi qua C(-1; -2)
=> pt AC: 3(x+1) -(y+2) =0
<=> 3x -y + 1=0
ta có A là giao điểm của AC và đg trung tuyến (d2) kẻ từ A
=> A là nghiệm của hệ:
{ 5x+y-9=0
{ 3x -y + 1=0
<=>
x=1 ; y=4
=> A( 1;4)
Vì B ∈ (d1) => B(5- 3y; y)
gọi I là trung điểm BC => I ∈ (d2)
Vì I là trung điểm BC
=>
{ 2xI = xB + xC
{ 2yI = yB + yC
<=>
{ xI= (5-3y-1)/2 = (4-3y)/2
{ yI= (y -2)/2
Vì I ∈ (d2)
=> 5(4-3y)/2 + (y -2)/2 -9 =0
<=> y= 0
=> B( 5; 0)
Vậy A( 1;4) và B( 5; 0)
Ta có pt đường cao kẻ từ B: (d1) x+3y-5=0
Vì AC _|_ (d1) và AC đi qua C(-1; -2)
=> pt AC: 3(x+1) -(y+2) =0
<=> 3x -y + 1=0
Ta có A là giao điểm của AC và đường trung tuyến (d2) kẻ từ A
=> A là nghiệm của hệ:
{ 5x+y-9=0
{ 3x -y + 1=0
<=>
x=1 ; y=4
=> A( 1;4)
Vì B ∈ (d1) => B(5- 3y; y)
Gọi I là trung điểm BC => I ∈ (d2)
Vì I là trung điểm BC
=>
{ 2xI = xB + xC
{ 2yI = yB + yC
<=>
{ xI= (5-3y-1)/2 = (4-3y)/2
{ yI= (y -2)/2
Vì I ∈ (d2)
=> 5(4-3y)/2 + (y -2)/2 -9 =0
<=> y= 0
=> B( 5; 0)
Vậy A( 1;4) và B( 5; 0)
Đáp án A
Ta có: y ' = − m − 3 x − 1 2
Ta có: x 0 = 2 ⇒ y 0 = m + 5 , y ' x 0 = − m − 3. Phương trình tiếp tuyến Δ của C m tại điểm có hoành độ x 0 = 2 là: y = − m − 3 x − 2 + m + 5 = − m − 3 x + 3 m + 11
• Δ ∩ O x = A ⇒ A 3 m + 11 m + 3 ; 0 , với m + 3 ≠ 0
• Δ ∩ O y = B ⇒ B 0 ; 3 m + 11
Suy ra diện tích tam giác OAB là: S = 1 2 O A . O B = 1 2 3 m + 11 2 m + 3
Theo giả thiết bài toán ta suy ra: 1 2 3 m + 11 2 m + 3 = 25 2
⇔ 3 m + 11 2 = 25 m + 3 ⇔ 9 m 2 + 66 m + 121 = 25 m + 75 9 m 2 + 66 m + 121 = − 25 m − 75 ⇔ 9 m 2 + 41 m + 46 = 0 9 m 2 + 91 m + 196 = 0 ⇔ m = − 2 ; m = − 23 9 m = − 7 ; m = − 28 9