K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2019

Chọn đáp án A

Chú ý: Ta có một số bài toán có thể giải bằng công thức tính nhanh

tại M tạo với hai tiệm cận

a. Một tam giác vuông cân.

b. Một tam giác vuông có cạnh huyền nhỏ nhất.

c. Một tam giác có chu vi nhỏ nhất.

d. Một tam giác có bán kính đường tròn ngoại tiếp nhỏ nhất.

e. Một tam giác có bán kính đường tròn nội tiếp lớn nhất.

5. Tìm 2 điểm  thuộc hai nhánh khác nhau của đồ thị (C) sao cho tiếp tuyến tại và song song với nhau đồng thời MN đạt giá trị nhỏ nhất.

Công thức tính nhanh cho các bài toán trên như sau:

Hoành độ điểm M(hoặc hoành độ hai điểm M và N) cần tìm là nghiệm của phương trình  y ' 2 = 1

23 tháng 1 2017

Chọn đáp án B

Đạo hàm

 

 

Đường thẳng ∆  là tiếp tuyến của đồ thị (C) tại  ∆  nên có hệ số góc là  

Phương trình 

 

Đồ thị (C) có đường tiệm cận đứng là ∆ 1 : x = - 1 và đường tiệm cận ngang là  ∆ 2 : y = 1

Nửa chu vi tam giác IMN là

 

Dấu "=" xảy ra khi

Bán kính đường tròn nội tiếp tam giác IMN là

19 tháng 11 2019

Đáp án B

Tâm đối xứng của đồ thị (C) là giao điểm hai đường tiệm cận. (C) có tiệm cận đứng là x=-1, tiệm cận ngang là y=2 => I(-1;2) 

Ta có: y ' = 1 x + 1 2 ⇒  PTTT tại điểm M a ; b  là y = 1 a + 1 2 x − a + 2 a + 1 a + 1 . Từ đây ta xác định được giao điểm của PTTT tại M a ; b  và hai tiệm cận x = − 1 , y = 2  là A − 1 ; 2 a a + 1 , B 2 a + 1 ; 2 .

Độ dài các cạnh của Δ I A B  như sau

  I A = 2 a a + 1 − 2 = 2 a + 1 I B = 2 a + 1 + 1 = 2 a + 1 A B = 2 1 a + 1 2 + a + 1 2 ⇒ S I A B = 1 2 I A . I B = 2 ;

P = I A + I B + A B 2 = 1 a + 1 + a + 1 + 1 a + 1 2 + a + 1 2

Áp dụng bất đẳng thức Cosi ta có p ≥ 2 + 2  đạt được ⇔ a + 1 = 1 ⇔ a = 0 ⇒ b = 1 a = − 2 ⇒ b = 3 ⇒ a + b = 1

11 tháng 11 2019

Đáp án B

Điểm M ∈ C ⇒ M a ; 2 a + 1 a + 1 ⇒ y ' a = 1 a + 1 2

và  y a = 2 a + 1 a + 1 .

Suy ra phương trình tiếp tuyến của ( C) tại M là

y = 2 a + 1 a + 1 = 1 a + 1 2 x − a ⇔ y = x a + 1 2 + 2 a 2 + 2 a + 1 a + 1 2    d .

Đường thẳng ( d ) cắt tiệm cận đứng tại

A − 1 ; 2 a a + 1 ⇒ I A = 2 a + 1 .

Đường thẳng ( d ) cắt tiệm cận ngang tại

B 2 a + 1 ; 2 ⇒ I B = 2 a + 1 .

Suy ra I A . I B = 4  và tam giác IAB vuông tại I

⇒ S Δ I A B = 1 2 . I A . I B = 2

Mà  S Δ I A B = I A + I B + I C 2   x   r ⇒ r m ax

khi và chỉ khi  I A + I B + I C min

Ta có

I A + I B + I C = I A + I B + I A 2 + I B 2 ≥ 2 I A . I B + 2 I A . I B = 4 + 4 2 .

Dấu “=” xảy ra

⇔ 2 a + 1 = 2 a + 1 ⇔ a + 1 2 = 1 ⇔ a = 0 ⇒ b = 1 a = − 2 ⇒ b = 3 ⇒ a + b = 1.

4 tháng 11 2019

Đáp án C.

Ta có I 2 ; 1 .

Tiếp tuyến với C  tại điểm M x 0 ; x 0 + 2 x 0 − 2  là d : y = − 4 x 0 − 2 2 x − x 0 + x 0 + 2 x 0 − 2

Tọa độ A là nghiệm của hệ

y = − 4 x 0 − 2 2 x − x 0 + x 0 + 2 x 0 − 2 x = 2 ⇒ y = 4 x 0 − 2 + x 0 + 2 x 0 − 2 ⇒ A 2 ; x 0 + 6 x 0 − 2 ⇒ I A → = 0 ; 8 x 0 − 2

Tọa độ B là nghiệm của hệ

y = − 4 x 0 − 2 2 x − x 0 + x 0 + 2 x 0 − 2 y = 2 ⇒ x 0 − 2 2 = − 4 x − x 0 + x 0 2 − 4 ⇒ B 2 x 0 − 2 ; 1 ⇒ I B → = 2 x 0 − 4 ; 0 Do đó C I A B = π . A B = π I A 2 + I B 2 ≥ π 2 I A . I B  

Mà I A . I B = 8 x 0 − 2 . 2 x 0 − 4 = 16 ⇒ C I A B ≥ 4 π 2  

21 tháng 10 2019

Đáp án D

2 tháng 11 2017

Đáp án D

y ' = 4 a x 3 + 2 b x ,   y ' 1 = - 4 a - 2 b

Phương trình tiếp tuyến tại A là: d: y=(-4a-2b)(x+1)

Xét phương trình tương giao:  a x 4 + b x 2 + c = ( - 4 a - 2 b ) ( x + 1 )

 

Phương trình có 2 nghiệm x=0,x=2 =>  4 a + 2 b + c = 0 28 a + 10 b + c = 0 ( 1 )

∫ 0 2 - 4 a - 2 b x + 1 -   a x 4 - b x 2 - c d x = - 2 a - b x 2 + - 4 a - 2 b x - a x 5 5 - b x 3 3 - c x 2 0 = - 112 5 a - 32 3 b - 2 c = 28 5 2 1 , 2 ⇒ a = 1 b = - 3 ⇒ y = x 4 - 3 x 2 + 2 ,   d :   y = 2 x + 2 c = 2 ⇒ S = ∫ - 1 0 x 4 - 3 x 2 + 2 d x = x 5 5 - x 3 - x 2 0 - 1 = 1 5

27 tháng 8 2017

Đáp án D

∫ 0 2 [ ( − 4 a − 2 b ) ( x + 1 ) − ax 4 − b x 2 − c ] d x = [ ( − 2 a − b ) x 2 + ( − 4 a − 2 b ) x − ax 5 5 − b x 3 3 − c x ] 2 0 = − 112 5 a − 32 3 b − 2 c = 28 5     ( 2 ) ( 1 ) , ( 2 ) ⇒ a = 1 b = − 3 c = 2 ⇒ y = x 4 − 3 x 2 + 2 , d : y = 2 x + 2 ⇒ S = ∫ − 1 0 ( x 4 − 3 x 2 + 2 ) d x = x 5 5 − x 3 − x 2 0 − 1 = 1 5

20 tháng 5 2018

Đáp án D.

Ta có  y ' = 4 a x 3 + 2 b x → y ' − 1 = − 4 a − 2 b   . Phương trình tiếp tuyến của  (C) tại điểm  A − 1 ; 0  là đường thẳng

d : y = y ' − 1 . x + 1 ⇔ y = − 4 a − 2 b x − 4 a − 2 b

 

Phương trình hoành độ giao điểm của đường thẳng d và đồ thị (C) là:

  a x 4 + b x 2 + c = − 4 a + 2 b x − 4 a − 2 b ⇔ a x 4 + b x 2 + 4 a + 2 b x + 4 a + 2 b + c = 0 (*)

Quan sát đồ thị, ta thấy đường thẳng d cắt đồ thị  tại hai điểm có hoành độ   x = 0, x = 2 nên phương trình (*) có hai nghiệm x = 0, x = 2 .

Suy ra  

4 a + 2 b + c = 0 16 a + 4 b + 2 4 a + 2 b + 4 a + 2 b + c = 0 ⇔ 4 a + 2 b + c = 0 28 a + 10 b + c = 0  (1)

Diện tích hình phẳng giới hạn bởi đường thẳng d, đồ thị (C) và hai đường thẳng   x = 0, x = 2  

  S = ∫ 0 2 − 4 a − 2 b x − 4 a − 2 b − a x 4 + b x 2 + c d x = 28 5

  ⇔ ∫ 0 2 − 4 a − 2 b x − 4 a − 2 b − a x 4 − b x 2 − c d x = 28 5

⇔ − a 5 x 5 − b 3 x 3 − 2 a + b x 2 − 4 a + 2 b + c x 0 2 = 28 5

  ⇔ − 32 5 a − 8 b 3 − 4 2 a + b − 2 4 a + 2 b + c = − 28 5 ⇔ 112 5 a + 32 3 b + 2 c = 28 5 ( 2 )

Giải hệ phương trình gồm (1) và (2) ta tìm được: a = − 1, b = 3, c = − 2 .

Suy ra C : y = − x 4 + 3 x 2 − 2  và d : y = − 2 x − 2 . Diện tích hình phẳng cần tính là:

S = ∫ − 1 0 − x 4 + 3 x 2 − 2 − − 2 x − 2 d x = ∫ − 1 0 − x 4 + 3 x 2 + 2 x d x = ∫ − 1 0 x 4 − 3 x 2 − 2 x d x  

  = x 5 5 − x 3 − x 2 − 1 0 = 1 5 (đvdt).

22 tháng 12 2018

Đáp án C