K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2017

+Đồ thị hàm số đã cho có TCĐ là x= 1 và TCN là y= 2;  giao điểm của hai tiệm cận là

 I (1; 2) .

 Lấy điểm  M ( a ;   b )   ∈ C ⇒ b = 2 a - 1 a - 1   ( a > 1 ) .

+ Phương trình tiếp tuyến của (C )  tại M là  y = - 1 ( a - 1 ) 2 ( x - a ) + 2 a - 1 a - 1

+ Phương trình  đường thẳng MI  là  y = 1 ( a - 1 ) 2 ( x - 1 ) + 2

+ Tiếp tuyến tại M vuông góc với MI  nên ta có

- 1 ( a - 1 ) 2 . 1 ( a - 1 ) 2 = - 1 ⇔

Vì yêu cầu hoành độ và tung độ của M nguyên dương nên điểm cần tìm là  M( 2; 3).

Chọn D.

29 tháng 4 2016

Ta có : \(y'=-\frac{1}{\left(x-1\right)^2};x\ne1\)

Giao điểm cả 2 đường tiệm cận là I(1;2)

Gọi \(M\left(x_0;2+\frac{1}{x_0-1}\right)\) là tiếp điểm. Khi đó hệ số góc của tiếp tuyến \(\Delta\) tại M là \(k_1=-\frac{1}{\left(x_0-1\right)^2}\)

Ta có \(\overrightarrow{IM}\left(x_0-1;\frac{1}{x_0-1}\right)\) nên đường thẳng IM có hệ số góc \(k_2=\frac{1}{\left(x_0-1\right)^2}\)

\(IM\perp\Delta\Leftrightarrow k_1k_2=-1\Leftrightarrow x_0=0;x_0=2\)

Vậy có 2 điểm cần tìm là : \(M_1\left(0;1\right);M_2\left(2;3\right)\)

21 tháng 5 2020

Tại s k2 có hệ số góc là 1/(x-1)^2 vậy

3 tháng 5 2016

a) (C) có 2 tiệm cận xiên là x = -1 và y = x + 1

I là tâm đối xứng \(\Rightarrow I\left(-1;0\right)\) (I là giao của 2 tiệm cận)

Xét \(M\left(x_0;f\left(x_0\right)\right)\in\left(C\right)\). Tiếp tuyến \(\Delta\) tại M của (C) :

\(y=y'\left(x_0\right)\left(x-x_0\right)+y_0=\frac{x_0^2+2x_0}{\left(x_0+1\right)^2}\left(x-x_0\right)+\frac{x^2_0+2x_0+2}{x_0+1}\)

 \(\Delta\) cắt tiệm cận đứng tại \(A\left(-1;\frac{2}{x_0+1}\right)\) và cắt tiệm cận xiên tại \(B\left(2x_0+1;2x_0+2\right)\)\(\begin{cases}\frac{x_A+x_B}{2}=x_0=x_M\\\frac{y_A+y_B}{2}=\frac{x_0^2+2x_0+2}{x_0+1}=y_M\end{cases}\)\(\Rightarrow\) M là trung điểm của ABGọi H là hình chiếu của B lên IA\(\Rightarrow BH=2\left|x_0+1\right|\) mà \(IA=\frac{2}{\left|x_0+1\right|}\) suy ra \(S_{\Delta ABI}=\frac{1}{2}BH.IA=2\) => điều cần chứng minh b) Ta có : \(AB^2=4\left[2\left(x+1\right)^2+\frac{1}{\left(x+1\right)^2}-2\right]\ge4\left(2\sqrt{2}-2\right)\Rightarrow AB\ge2\sqrt{2\sqrt{2}-2}\)Đẳng thức xảy ra \(\Leftrightarrow2\left(x_0+1\right)^4=1\Leftrightarrow x_0=-1\pm\frac{1}{\sqrt[4]{2}}\) c) Xét \(M\left(x_0;y_0\right)\in\left(C\right)\). Tiếp tuyến tại M vuông góc với tiệm cận xiên\(\Leftrightarrow y'\left(x\right)=-1\Leftrightarrow\frac{x^2_0+2x_0}{\left(x_0+1\right)^2}=-1\Leftrightarrow2x^2_0+4x_0+1=0\Leftrightarrow x_0=\frac{-2\pm\sqrt{2}}{2}\)Vậy \(M\left(\frac{-2\pm\sqrt{2}}{2};\pm\frac{3\sqrt{2}}{2}\right)\) 
17 tháng 1 2019

22 tháng 6 2017

22 tháng 7 2019

Chọn A

 Phương trình tiếp tuyến tại điểm M là d: 

Đồ thị có hai tiệm cận có phương trình lần lượt là  d 1 : x = 1;  d 2 : y = 2

d cắt d 1  tại điểm 

d cắt d 2  tại điểm Q(2a-1;2),  d 1  cắt  d 2  tại điểm I(1;2)

Ta có 

16 tháng 7 2018

Hệ số góc của đường thẳng IM là:

 

Mặt khác tiếp tuyến tại M có hệ số góc  k = y ' ( a ) = - 1 ( a - 1 ) 2

Giả thiết bài toán

 

Chọn C.

22 tháng 6 2018