K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Ta có:

\(\begin{array}{l}y =  - 0,00188{\left( {x - 251,5} \right)^2} + 118\\y =  - 0,00188.\left( {{x^2} - 503x + 63252,25} \right) + 118\\y =  - 0,00188{x^2} + 0,94564x - 118,91423 + 118\\y =  - 0,00188{x^2} + 0,94564x - 0,91423\end{array}\)

b) Bậc của đa thức là 2

c) Hệ số của \({x^2}\) là -0,00188

Hệ số của x là 0,94564

Hệ số tự do là -0,91423

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Hàm số \(y =  - 3{x^2}\) là hàm số bậc hai.

\(y =  - 3.{x^2} + 0.x + 0\)

Hệ số \(a =  - 3,b = 0,c = 0\).

b) Hàm số \(y = 2x\left( {{x^2} - 6x + 1} \right)\)\( \Leftrightarrow y = 2{x^3} - 12{x^2} + 2x\) có số mũ cao nhất là 3 nên không là hàm số bậc hai.

c) Hàm số \(y = 4x\left( {2x - 5} \right)\)\( \Leftrightarrow y = 8{x^2} - 20x\) có số mũ cao nhất là 2 nên là hàm số bậc hai.

Hệ số \(a = 8,b =  - 20,c = 0\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) \(y = 2x(x - 3) = 2{x^2} - 6\)

Hàm số có lũy thừa bậc cao nhất của x là bậc hai

b) \(y = x({x^2} + 2) - 5 = {x^3} + 2x - 5\)

Hàm số có lũy thừa bậc cao nhất của x là bậc ba

c) \(y =  - 5(x + 1)(x - 4) =  - 5{x^2} + 15x + 20\)

Hàm số có lũy thừa bậc cao nhất của x là bậc hai

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Hệ số a là: a=1

\(f(0) = {0^2} - 4.0 + 3 = 3\)

\(f(1) = {1^2} - 4.1 + 3 = 0\)

\(f(2) = {2^2} - 4.2 + 3 =  - 1\)

\(f(3) = {3^2} - 4.3 + 3 = 0\)

\(f(4) = {4^2} - 4.4 + 3 = 3\)

=> f(0); f(4) cùng dấu với hệ số a; f(2) khác dấu với hệ số a

b) Nhìn vào đồ thị ta thấy

- Trên khoảng \(\left( { - \infty ;1} \right)\) đồ thị nằm phía trên trục hoành

- Trên khoảng \(\left( {1;3} \right)\), đồ thị nằm phía dưới trục hoành

- Trên khoảng \(\left( {3; + \infty } \right)\), đồ thị nằm phía trên trục hoành

c) - Trên khoảng \(\left( { - \infty ;1} \right)\) đồ thị nằm phía trên trục hoành => f(x)>0, cùng dầu với hệ số a

- Trên khoảng \(\left( {1;3} \right)\), đồ thị nằm phía dưới trục hoành => f(x) <0, khác dấu với hệ số a

- Trên khoảng \(\left( {3; + \infty } \right)\), đồ thị nằm phía trên trục hoành => f(x)>0, cùng dấu với hệ số a

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Số mũ cao nhất của hàm số là 2, suy ra biểu thức\(f\left( x \right)\)đã cho là đa thức bậc hai

b) Thay \(x = 2\) vào \(f\left( x \right)\) ta có:

\(f\left( 2 \right) =  - {2^2} + 2 + 3 = 1 > 0\)

Suy ra \(f\left( 2 \right)\) dương.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) (P) nằm hoàn toàn trên trục hoành thì (P) không cắt trục hoành => Phương trình

\(a{x^2} + bx + c = 0\)vô nghiệm => \(\Delta  < 0\)

(P) nằm hoàn toàn trên trục hoành thì bề lõm phải hướng lên trên => a>0

b) Tương tự câu a:

(P) nằm hoàn toàn dưới trục hoành thì (P) không cắt trục hoành => Phương trình \(a{x^2} + bx + c = 0\)vô nghiệm => \(\Delta  < 0\)

(P) nằm hoàn toàn dưới trục hoành thì bề lõm phải hướng xuống dưới=> a<0

c) (P) cắt trục hoành tại hai điểm phân biệt => Phương trình \(a{x^2} + bx + c = 0\) có 2 nghiệm phân biệt=> \(\Delta  > 0\)

(P) có đỉnh nằm phía dưới trục hoành mà có 2 nghiệm phân biệt thì bề lõm phải hướng lên trên ⇒ a>0

d) (P) tiếp xúc với trục hoành ⇒ Phương trình \(a{x^2} + bx + c = 0\)có duy nhất 1 nghiệm ⇒ \(\Delta  = 0\)

(P) nằm phía trên trục hoành nên bề lõm phải hướng lên trên ⇒ a > 0

24 tháng 9 2023

Tham khảo:

a) Ta có: \(f(0) = a{.0^2} + b.0 + c = 1 \Rightarrow c = 1.\)

Lại có:

 \(f(1) = a{.1^2} + b.1 + c = 2 \Rightarrow a + b + 1 = 2\)

\(f(2) = a{.2^2} + b.2 + c = 5 \Rightarrow 4a + 2b + 1 = 5\)

Từ đó ta có hệ phương trình \(\left\{ \begin{array}{l}a + b + 1 = 2\\4a + 2b + 1 = 5\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}a + b = 1\\4a + 2b = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 0\end{array} \right.\)(thỏa mãn điều kiện \(a \ne 0\))

Vậy hàm số bậc hai đó là \(y = f(x) = {x^2} + 1\)

b) Tập giá trị \(T = \{ {x^2} + 1|x \in \mathbb{R}\} \)

Vì \({x^2} + 1 \ge 1\;\forall x \in \mathbb{R}\) nên \(T = [1; + \infty )\)

Đỉnh S có tọa độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 0}}{{2.1}} = 0;{y_S} = f(0) = 1\)

Hay \(S\left( {0;1} \right).\)

Vì hàm số bậc hai có \(a = 1 > 0\) nên ta có bảng biến thiên sau:

Hàm số nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và đồng biến trên khoảng \(\left( {0; + \infty } \right)\)

Bạn xem lại đề

30 tháng 3 2017

Một hàm số cho bởi công thức y = f(x) mà không chú thích gì về tập các định thì ta quy ước rằng tập xác định của hàm số ấy là tập hợp tất cả x ∈ R sao cho biểu thức f(x) có nghĩa.

Hàm số \(y=\dfrac{x+1}{\left(x+1\right)\left(x^2+2\right)}\) có tập xác định là D = R/{-1}, còn hàm số \(y=\dfrac{1}{x^2+2}\). Do đó hai hàm số khác nhau (mặc dù rằng với mọi x ≠ -1 giá trị của hàm số luôn bằng nhau khi x lấy cùng một giá trị.

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Hàm số \(y = 2x + 1\) cho bằng công thức \(2x + 1\) nên \(2x + 1\) là biểu thức xác định của hàm số.

b) Hàm số \(y = \sqrt {x - 2} \) cho bằng công thức \(\sqrt {x - 2} \) nên \(\sqrt {x - 2} \) là biểu thức xác định của hàm số.