\(\dfrac{1}{x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2017

Phần này khó chú ý nè bạn
Giải
Ta có f(x1+x2) = f(x1) + f(x2)
nên f(7) = f(3)+f(4)= f(2)+f(1) + f(2)+f(2) = f(1)+f(1)+f(1)+f(1)+f(1)+f(1)+f(1)=7

\(f\left(\dfrac{1}{7}\right)=\dfrac{1}{49}.f\left(7\right)=\dfrac{1}{49}.7=\dfrac{1}{7}\)

Ta có :\(f\left(\dfrac{5}{7}\right)=f\left(\dfrac{2}{7}\right)+f\left(\dfrac{3}{7}\right)=f\left(\dfrac{1}{7}\right)+f\left(\dfrac{1}{7}\right)+f\left(\dfrac{1}{7}\right)+f\left(\dfrac{2}{7}\right)=f\left(\dfrac{1}{7}\right)+f\left(\dfrac{1}{7}\right)+f\left(\dfrac{1}{7}\right)+f\left(\dfrac{1}{7}\right)+f\left(\dfrac{1}{7}\right)=\dfrac{1}{7}+\dfrac{1}{7}+\dfrac{1}{7}+\dfrac{1}{7}+\dfrac{1}{7}=\dfrac{5}{7}\)

4 tháng 6 2017

Đức cường sai rồi

ai cho f(1/7) =1/7 đâu?

9 tháng 3 2020

a)Với x1 = x= 1

 \( \implies\) \(f\left(1\right)=f\left(1.1\right)\)

 \( \implies\) \(f\left(1\right)=f\left(1\right).f\left(1\right)\)

 \( \implies\)\(f\left(1\right).f\left(1\right)-f\left(1\right)=0\)

 \( \implies\) \(f\left(1\right).\left[f\left(1\right)-1\right]=0\)

\( \implies\) \(\orbr{\begin{cases}f\left(1\right)=0\\f\left(1\right)-1=0\end{cases}}\)

Mà \(f\left(x\right)\) khác \(0\) ( với mọi \(x\) \(\in\) \(R\) ; \(x\) khác \(0\) )

\( \implies\) \(f\left(1\right)\) khác \(0\)

\( \implies\) \(f\left(1\right)-1=0\)

\( \implies\) \(f\left(1\right)=1\)

b)Ta có : \(f\left(\frac{1}{x}\right).f\left(x\right)=f\left(\frac{1}{x}.x\right)\)

\( \implies\) \(f\left(\frac{1}{x}\right).f\left(x\right)=f\left(1\right)=1\)

 \( \implies\) \(f\left(\frac{1}{x}\right).f\left(x\right)=1\)

\( \implies\) \(f\left(\frac{1}{x}\right)=\frac{1}{f\left(x\right)}\)

\( \implies\) \(f\left(x^{-1}\right)=\left[f\left(x\right)\right]^{-1}\)

6 tháng 6 2017

b/ Theo đề bài thì ta có:

\(\left\{{}\begin{matrix}f\left(1\right)=f\left(-1\right)\\f\left(2\right)=f\left(-2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a_4+a_3+a_2+a_1+a_0=a_4-a_3+a_2-a_1+a_0\\16a_4+8a_3+4a_2+2a_1+a_0=16a_4-8a_3+4a_2-2a_1+a_0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a_3+a_1=0\\4a_3+a_1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a_3=0\\a_1=0\end{matrix}\right.\)

Ta có: \(f\left(x\right)-f\left(-x\right)=a_4x^4+a_3x^3+a_2x^2+a_1x+a_0-\left(a_4x^4-a_3x^3+a_2x^2-a_1x+a_0\right)\)

\(=2a_3x^3+2a_1x=0\)

Vậy \(f\left(x\right)=f\left(-x\right)\)với mọi x

6 tháng 6 2017

a/ Áp dụng tính chất dãy tỷ số bằng nhau ta có:

\(\dfrac{a}{2015}=\dfrac{b}{2016}=\dfrac{c}{2017}=\dfrac{a-b}{-1}=\dfrac{b-c}{-1}=\dfrac{c-a}{2}\)

\(\Rightarrow c-a=-2\left(a-b\right)=-2\left(b-c\right)\)

Thế vào B ta được

\(B=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)

\(=4\left(a-b\right)\left(b-c\right)-\left[-2\left(a-b\right).\left(-2\right).\left(b-c\right)\right]\)

\(=4\left(a-b\right)\left(b-c\right)-4\left(a-b\right)\left(b-c\right)=0\)

22 tháng 3 2017

Câu a thì dài, câu b thì ngắn. Xin giải câu b trước để đi ngủ

b) Giải:

\(f\left(x_1.x_2\right)=f\left(x_1\right).f\left(x_2\right)\) nên:

\(f\left(4\right)=f\left(2.2\right)=f\left(2\right).f\left(2\right)=10.10=100\)

\(f\left(16\right)=f\left(4.4\right)=f\left(4\right).f\left(4\right)=100.100=10000\)

\(f\left(32\right)=f\left(16.2\right)=f\left(16\right).f\left(2\right)=10000.10=100000\)

Vậy \(f\left(32\right)=100000\)