K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2018

Chọn C.

Đặt  u   =   G ( x ) d v   =   f ( x ) d x ⇒ d u   =   G ( x ) ' d x   =   g ( x )   d x v   =   ∫ f ( x ) d x   =   F ( x )

Suy ra: I =  G ( x ) F ( x ) 2 0   - ∫ 0 2 F ( x ) g ( x ) d x  

= G(2)F(2) – G(0)F(0) – 3 = 1 – 0 – 3 = -2.

NV
17 tháng 7 2021

a.

TXĐ: \(D=\left[-4;2\right]\)

\(0\le\sqrt{9-\left(x+1\right)^2}\le3\Rightarrow-1\le\sqrt{9-\left(x+1\right)^2}\le2\)

\(\Rightarrow f'\left(\sqrt{8-x^2-2x}-1\right)\le0\) ; \(\forall x\in D\)

\(g'\left(x\right)=-\dfrac{x+1}{\sqrt{8-x^2-2x}}.f'\left(\sqrt{8-x^2-2x}-1\right)\) luôn cùng dấu \(x+1\)

\(\Rightarrow g\left(x\right)\) đồng biến trên \(\left[-1;2\right]\) và nghịch biến trên \(\left[-4;-1\right]\)

Từ BBT ta thấy \(g\left(x\right)_{max}=g\left(-4\right)=g\left(2\right)=f\left(-1\right)=?\)

\(g\left(x\right)_{min}=g\left(-1\right)=f\left(2\right)=?\)

(Do đề chỉ có thế này nên ko thể xác định cụ thể được min-max)

b.

\(g'\left(x\right)=\left(2x+1\right).f'\left(x^2+x\right)=0\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\f'\left(x^2+x\right)=0\left(1\right)\end{matrix}\right.\)

Xét (1), ta chỉ cần quan tâm 2 nghiệm bội lẻ:

\(f'\left(x^2+x\right)=0\Rightarrow\left[{}\begin{matrix}x^2+x=-1\left(vô-nghiệm\right)\\x^2+x=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Với \(\left[{}\begin{matrix}x\le-2\\x\ge1\end{matrix}\right.\) \(\Rightarrow x^2+x\ge2\) ; với \(-2\le x\le1\Rightarrow-1\le x^2+x\le2\) nên ta có bảng xét dấu:

undefined

Từ BBT ta có: \(x=-\dfrac{1}{2}\) là cực đại, \(x=-2;x=1\) là 2 cực tiểu

Hàm đồng biến trên ... bạn tự kết luận

1 tháng 1 2017

17 tháng 4 2017

Chọn C

Xét hàm số g(x) =  f 3 ( x )   -   3 f ( x )  trên đoạn [-1;2]

Từ bảng biến thiên, ta có: 

Và  nên f(x) đồng biến trên [-1;2] 

nên (2) vô nghiệm

Do đó, g'(x) = 0 chỉ có  nghiệm là x = -1 và x = 2

Ta có 

Vậy 

16 tháng 1 2017

Đáp án D

26 tháng 2 2018

Chọn A

Ta có 

1 tháng 11 2017