Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2}{d^2}\)
\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)
Do đó: \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\)
c) +)Điểm A ( 1;9) => x = 1 ; y = 9
Thay x = 1 vào y = 4x+5 , ta có:
y = 4.1+5
y = 4+5
y = 9
Vậy điểm A ( 1;9 ) thuộc đồ thị hàm số y = 4x +5
+) Điểm B ( -2;3 ) => x = -2 ; y = 3
Thay x = -2 vào y = 4x +5 , ta có:
y = 4.(-2) + 5
y = (-8) + 5
y = (-3)
Vậy điểm B ( -2;3) không thuộc đồ thị hàm số y = 4x+5
....Các câu khác tương tự....> . <...
a, Vì b,d > 0 -> ad/bd < cb/bd -> ad<bc
b, ad<bc -> ad/bd < bc/bd ( vì b,d > 0 => bd>0) => a/b < c/d
a) \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)
b) \(ad< bc\Leftrightarrow ad+ab< bc+ab\)
\(\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
\(ad< bc\Leftrightarrow ad+cd< bc+cd\)
\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\) (2)
Từ (1) và (2) suy ra: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)