K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2015

Để f(x) = -5

=> 4x2-5 = -5

=> 4x2=0

=> x2=0

=> x= 0

Để f(x) =1

=> 4x2-5=1

=> 4x2 = 6

=> x2 = \(\frac{3}{2}\)

=> x = \(-\sqrt{\frac{3}{2}}\) ; \(\sqrt{\frac{3}{2}}\)

19 tháng 10 2015

f(x)= -5 ta có: 4x2-5 =-5

                        4x2= 0

                      x2= 0:4 = 0

suy ra x = 0

19 tháng 2 2020

P/s: Câu c sủa đề đi, như đề cũ không chứng minh được đâu

\(a)\) \(y=f\left(x\right)=4x^2-5\)

\(\Leftrightarrow f\left(3\right)=4.3^2-5=31\)

\(\Leftrightarrow f\left(-\frac{1}{2}\right)=4.\left(-\frac{1}{2}\right)^2-5=-4\)

\(b)\) \(f\left(x\right)=-1\)

\(\Leftrightarrow4x^2-5=-1\)

\(\Leftrightarrow4x^2=4\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)

\(c)\) Đặt \(f\left(x\right)=kx\Leftrightarrow-f\left(x\right)=-kx\)

Và \(f\left(-x\right)=k\left(-x\right)=-kx\)

Do đó chứng minh được \(-f\left(x\right)=f\left(-x\right)\)

4 tháng 12 2016

\(a.\)

Theo đề , ta có : \(y=f\left(x\right)=4x^2-5\)

\(\Rightarrow\)

\(f\left(3\right)=4.\left(3\right)^2-5=31\)

\(f\left(-\frac{1}{2}\right)=4.\left(-\frac{1}{2}\right)^2-5=-4\)

 

\(b.\)

Ta có : \(f\left(x\right)=-1\)

\(\Rightarrow4x^2-5=-1\)

\(\Rightarrow4x^2=-1+5=4\)

\(\Rightarrow x^2=4:4=1\)

\(\Rightarrow x=\sqrt{1}=1\)

\(c.\)

Ta có :

\(f\left(x\right)=4x^2-5\)

\(\Rightarrow f\left(x\right)=4.\left(x\right)^2-5\) \(\left(1\right)\)

\(f\left(-x\right)=4.\left(-x\right)^2-5=4.\left(x\right)^2-5\) \(\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\Rightarrow f\left(x\right)=f\left(-x\right)\)

25 tháng 12 2016

\(y=f\left(x\right)=x^2-5\)

Thay \(f\left(x\right)=-4x\) vào ta có:

\(x^2-5=-4x\)\(\Rightarrow x^2-5+4x=0\)

\(\Rightarrow x^2+5x-x-5=0\)

\(\Rightarrow x\left(x+5\right)-\left(x+5\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x+5\right)=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}x-1=0\\x+5=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=1\\x=-5\end{array}\right.\)

 

25 tháng 12 2016

bài này có thiếu đk ko vậy

27 tháng 12 2016

x=C3 còn nữa

17 tháng 12 2017

gúp mik cái
chiều mik học rồi

28 tháng 1 2020

a) \(F\left(x\right)=\left(2x^2-4x+5\right)-\left(x^2-6\right)+2x-3\)

\(=2x^2-4x+5-x^2+6+2x-3\)

\(=\left(2x^2-x^2\right)+\left(2x-4x\right)+\left(5+6-3\right)\)

\(=x^2-2x+8\)

Hệ số tự do của đa thức F(x) là: 8

Hệ số bậc 1 của đa thức F(x) là: -2

b) \(F\left(x\right)=x^2-2x+8\)\(G\left(x\right)=-x^2-2x-9\)

+) \(\Rightarrow F\left(x\right)+G\left(x\right)=\left(x^2-2x+8\right)+\left(-x^2-2x-9\right)\)

\(=\left(x^2-x^2\right)+\left(-2x-2x\right)+\left(8-9\right)=-4x-1\)

Vậy \(M\left(x\right)=-4x-1\)

+) và \(F\left(x\right)-G\left(x\right)=\left(x^2-2x+8\right)-\left(-x^2-2x-9\right)\)

\(=\left(x^2+x^2\right)+\left(-2x+2x\right)+\left(8+9\right)=2x^2+17\)

Vậy \(N\left(x\right)=2x^2+17\)

c)

+) M(x) có nghiệm khị và chỉ khi M(x) = 0

\(\Leftrightarrow-4x-1=0\Leftrightarrow-4x=1\Leftrightarrow x=\frac{-1}{4}\)

Vậy M(x) có 1 nghiệm là \(\frac{-1}{4}\)

+) N(x) có nghiệm khị và chỉ khi N(x) = 0

\(\Leftrightarrow2x^2+17=0\)

Mà \(2x^2+17\ge17\left(dox^2\ge0\right)\)

Nên N(x) vô nghiệm

d) F(x) = x2 - 3\(\Leftrightarrow x^2-2x+8=x^2-3\Leftrightarrow-2x=-11\)

\(\Leftrightarrow x=\frac{11}{2}\)

Vậy \(x=\frac{11}{2}\)thì  F(x) = x2 - 3