\(f(x)= √2 (x+1) - √3 (x-1)\)

a, Hàm số trên đồng biến hay nghịch biến...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2018

Dễ xét 2 Trường hợp là ok :))))

Ta có: \(f\left(x\right)=ã+b\left(a\ne0\right)\left(x\in R\right)\)

TH1: Khi a > 0

* Cho x1 < x2

\(\Leftrightarrow ax_{ }_1< ax_2\)\(\Leftrightarrow ax_1+b< ax_2+b\)

\(\Leftrightarrow f\left(x_1\right)< f\left(x_2\right)\)

TH2: Khi a < 0

* Cho x1 < x2

\(\Leftrightarrow ax_1>ax_2\Leftrightarrow ax_1+b>ax_2+b\)

\(\Leftrightarrow f\left(x_1\right)>f\left(x_2\right)\)

Vậy hàm số trên đồng biến khi a > 0 với mọi \(x\in R\)

Nghịch biến khi a < 0 với mọi \(x\in R\)

28 tháng 10 2018
Đồng biến
19 tháng 10 2021

LỚP 4 KO BIẾT

23 tháng 10 2021

Đồng biến vì \(3m^2-m+3\)luôn dương

Lý do: \(3m^2-m+3\)có \(b^2-4ac=1-4.9=-35< 0\)

11 tháng 1 2021

a, Để  y = (m - 1)x + 2m - 3 là hàm số bậc nhất thì a \(\ne\) 0 \(\Leftrightarrow\) m - 1 \(\ne\) 0 \(\Leftrightarrow\) m \(\ne\) 1

y = (m - 1)x + 2m - 3 đồng biến trên R \(\Leftrightarrow\) a > 0 \(\Leftrightarrow\) m - 1 > 0 \(\Leftrightarrow\) m > 1

 y = (m - 1)x + 2m - 3 nghịch biến trên R \(\Leftrightarrow\) a < 0 \(\Leftrightarrow\) m - 1 < 0 \(\Leftrightarrow\) m < 1

b, f(1) = 2 

\(\Leftrightarrow\) (m - 1).1 + 2m - 3 = 2

\(\Leftrightarrow\) m - 1 + 2m - 3 = 2

\(\Leftrightarrow\) m = 2

Với m = 2 ta có:

f(2) = (2 - 1).2 + 2.2 - 3 = 3

Vậy f(2) = 3

c, f(-3) = 0

\(\Leftrightarrow\) (m - 1).0 + 2m - 3 = 0

\(\Leftrightarrow\) 2m = 3

\(\Leftrightarrow\) m = 1,5

Vì m > 1 (1,5 > 1)

\(\Rightarrow\) m - 1 > 0

hay a > 0

Vậy hàm số y = f(x) = (m - 1).x + 2m - 3 đồng biến trên R

Chúc bn học tốt!

a) 

+) Hàm số đồng biến \(\Leftrightarrow m>1\)

+) Hàm số nghịch biến \(\Leftrightarrow m< 1\)

b) Ta có: \(f\left(1\right)=2\) 

\(\Rightarrow m-1+2m+3=2\) \(\Leftrightarrow m=0\)

\(\Rightarrow f\left(2\right)=\left(0-1\right)\cdot2+2\cdot0-3=-5\)

c) Hàm số là hàm hằng

 

a: Hàm số này đồng biến vì \(2-\sqrt{3}>0\)

b: \(f\left(2+\sqrt{3}\right)=4-3-1=0\)

\(f\left(\sqrt{3}\right)=2\sqrt{3}-3-1=2\sqrt{3}-4\)

20 tháng 8 2018

a) f(5) = 2; f(1) = 0; f(0) không tồn tại; f(-1) không tồn tại.

b) Để hàm số được xác định thì \(x-1\ge0\Leftrightarrow x\ge1\)

c) Gọi x0 là số bất kì thỏa mãn \(x\ge1\). Khi đó ta có:

 \(h\left(x_0\right)=f\left[\left(x_0+1\right)-1\right]-f\left(x_0-1\right)=\sqrt{x_0}-\sqrt{x_0-1}\)  

\(h\left(x_0\right)\left[f\left(x_0+1\right)+f\left(x_0\right)\right]=\left(\sqrt{x_0}-\sqrt{x_0-1}\right)\left(\sqrt{x_0}+\sqrt{x_0-1}\right)=x_0-\left(x_0-1\right)=1>0\)

Vì \(\sqrt{x_0}+\sqrt{x_0-1}>0\Rightarrow h\left(x_0\right)>0\)

Vậy thì với các giá trị \(x\ge1\) thì hàm số đồng biến.