Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: \(\left\{{}\begin{matrix}-2< =x< =2\\x< >0\end{matrix}\right.\)
c: \(f\left(-x\right)=\dfrac{\sqrt{2-\left(-x\right)}-\sqrt{2+\left(-x\right)}}{-x}=\dfrac{\sqrt{2+x}-\sqrt{2-x}}{-x}=\dfrac{\sqrt{2-x}-\sqrt{2+x}}{x}=f\left(x\right)\)
Thế \(x=2,x=\frac{1}{2}\)thì được
\(\hept{\begin{cases}f\left(2\right)+3f\left(\frac{1}{2}\right)=4\\f\left(\frac{1}{2}\right)+3f\left(2\right)=\frac{1}{4}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}f\left(2\right)=-\frac{13}{32}\\f\left(\frac{1}{2}\right)=\frac{47}{32}\end{cases}}\)
Bài 1:
Ta có: xy ≤ (x + y)²/4 = 1/4, dấu = xảy ra khi x = y = 1/2
P = (x² + 1/y²)(y² + 1/x²) = (xy)² + 1 + 1 + 1/(xy)²
= (xy)² + 1/[256(xy)²] + 255/[256(xy)²] + 2
ta có:
(xy)² + 1/[256(xy)²] ≥ 2 √(1/256) = 1/8. dấu = xảy ra khi x = y = 1/2
255/[256(xy)²] + 2 ≥ 255/(256.1/16) + 2 = 287/16. dấu = xảy ra khi x = y = 1/2
cộng theo vế → P ≥ 1/8 + 287/16 = 289/16
vậy GTNN của P là 289/16, đạt được khi x = y = 1/2
Mình có nghĩ ra cách này mọi người xem giúp mình với
f(x) = \(ax^2+bx+c\)
Ta có f(0) = 2 => c = 2
Ta đặt Q(x) = \(ax^2+bx+c-2020\)
và G(x) = \(ax^2+bx+c+2021\)
f(x) - 2020 chia cho x - 1 hay Q(x) chia cho x - 1 được số dư
\(R_1\) = Q(1) = \(a.1^2+b.1+c-2020=a+b+c-2020\)
Mà Q(x) chia hết cho x-1 nên \(R_1\) = 0
hay \(a+b+c-2020=0\). Mà c = 2 => a + b = 2018 (1)
G(x) chia cho x + 1 số dư
\(R_2\) = G(-1) = \(a.\left(-1\right)^2+b.\left(-1\right)+c+2021=a-b+2+2021\)
Mà G(x) chia hết cho x + 1 nên \(R_2\)=0
hay \(a-b+2+2021=0\) => \(a-b=-2023\) (2)
Từ (1) và (2) suy ra: \(\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}a=-\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)
Ta có \(f\left(x\right)+2f\left(\frac{1}{x}\right)=x^2\)
Xét với x = a thì ta có \(f\left(a\right)+2f\left(\frac{1}{a}\right)=a^2\) (1)
Xét với x = \(\frac{1}{a}\) thì ta có \(f\left(\frac{1}{a}\right)+2f\left(a\right)=\frac{1}{a^2}\)(2)
Từ (1) và (2) ta suy ra \(\hept{\begin{cases}f\left(a\right)+2f\left(\frac{1}{a}\right)=a^2\\f\left(\frac{1}{a}\right)+2f\left(a\right)=\frac{1}{a^2}\end{cases}\Leftrightarrow}\hept{\begin{cases}f\left(a\right)+2f\left(\frac{1}{a}\right)=a^2\left(1\right)\\2f\left(\frac{1}{a}\right)+4f\left(a\right)=\frac{2}{a^2}\left(2\right)\end{cases}}\)
Lấy (2) trừ (1) theo vế được \(3f\left(a\right)=\frac{2}{a^2}-a^2\Leftrightarrow f\left(a\right)=\frac{\frac{2}{a^2}-a^2}{3}=\frac{2-a^4}{3a^2}\)
Từ đó suy ra được \(f\left(x\right)=\frac{2-x^4}{3x^2}\)
Đến đây dễ dàng tính được f(2)
Mình kí hiệu (1) (2) hai lần , bạn sửa lại chỗ đó nhé ^^