Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(x< 2\) nên x chỉ tiến tới 2 từ phía trái
Do đó hàm số chỉ có giới hạn trái tại điểm x=2 (giới hạn bằng dương vô cực)
+ A đúng theo định nghĩa.
+ B đúng. Vì:
+ C đúng.
- Đặt:
+ Vậy D sai.
Chọn D
+ Nếu hàm số y= f(x) có đạo hàm tại điểm x0 thì hàm số sẽ liên tục tại điểm x0
+ Ngược lại, nếu hàm số liên tục tại điểm x0 thì chưa chắc hàm số đã có đạo hàm tại điểm x0.
+ Theo định nghĩa đạo hàm tại 1 điểm ta có:
f ' ( x 0 ) = lim x → x 0 f ( x ) − f ( x 0 ) x − x 0 và f ' ( x 0 ) = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x
Vậy D sai
Chọn D.
A. Đúng (theo định nghĩa đạo hàm tại một điểm).
B. Đúng vì:
C. Đúng vì:
Chọn D
Đáp án D
- A. Đúng (theo định nghĩa đạo hàm tại một điểm).
- B. Đúng vì:
- C. Đúng vì:
+ Đặt:
b)
+ Đồ thị của hàm số y = f(x) là đường liền nét tại điểm có hoành độ x= 1.
+ Đồ thị hàm số y = g(x) là đường không liền nét tại điểm có hoành độ x= 1.
Đáp án D sai
Hàm đa thức có giới hạn tại mọi điểm và tại tất cả các điểm thì giới hạn trái luôn bằng giới hạn phải