\(f\left(x\right)=e^{\sqrt{x^2+1}}\left(e^x-e^{-x}\right)\). Có bao nhiêu số n...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 5 2022

Lời giải:
Đặt $\sqrt{x^2+1}+x=a$ thì:
$f(a)=e^a-e^{\frac{1}{a}}$

$f'(a)=e^a+\frac{1}{a^2}.e^{\frac{1}{a}}>0$ với mọi $a$

Do đó hàm $f(a)$ là hàm đồng biến hay $f(x)$ là hàm đồng biến trên R
$\Rightarrow f(x)> f(0)=0$ với mọi $x>0$

$\Rightarrow f(\frac{12}{m+1})>0$ với $m$ nguyên dương 

Do đó để $f(m-7)+f(\frac{12}{m+1})<0$ thì $f(m-7)<0$

$\Rightarrow m-7<0$

Mặt khác, dễ thấy: $f(x)+f(-x)=0$. Bây h xét:

$m=1$ thì $f(m-7)+f(\frac{12}{m+1})=f(-6)+f(6)=0$ (loại)

$m=2$ thì $f(m-7)+f(\frac{12}{m+1})=f(-5)+f(4)=f(4)-f(5)<0$ (chọn)

$m=3$ thì $f(m-7)+f(\frac{12}{m+1})=f(-4)+f(3)=f(3)-f(4)<0$ (chọn)

$m=4$ thì $f(m-7)+f(\frac{12}{m+1})=f(-3)+f(2,4)=f(2,4)-f(3)<0$ (chọn) 

$m=5$ thì $f(m-7)+f(\frac{12}{m+1})=f(-2)+f(2)=0$ (loại)

$m=6$ thì $f(m-7)+f(\frac{12}{m+1})=f(-1)+f(12/7)>f(-1)+f(1)=0$ (loại)

Vậy có 3 số tm

15 tháng 5 2022

sao ra được \(e^{\dfrac{1}{a}}\) vậy ạ? Em không hiểu dòng này "Mặt khác, dễ thấy: f(x)+f(−x)=0f(x)+f(−x)=0."

1 tháng 4 2017

a) Điều kiện x>0. Thực hiện chia tử cho mẫu ta được:

f(x) = = =

∫f(x)dx = ∫()dx = +C

b) Ta có f(x) = = -e-x

; do đó nguyên hàm của f(x) là:

F(x)= == + C

c) Ta có f(x) =

hoặc f(x) =

Do đó nguyên hàm của f(x) là F(x)= -2cot2x + C

d) Áp dụng công thức biến tích thành tổng:

f(x) =sin5xcos3x = (sin8x +sin2x).

Vậy nguyên hàm của hàm số f(x) là F(x) = -(cos8x + cos2x) +C

e) ta có

vậy nguyên hàm của hàm số f(x) là F(x) = tanx - x + C

g) Ta có ∫e3-2xdx= -∫e3-2xd(3-2x)= -e3-2x +C

h) Ta có :

= =

NV
21 tháng 3 2019

Nhìn 2 vế của hàm số thì có vẻ ta cần phân tích biểu thức vế trái về dạng \(\left[f\left(x\right).u\left(x\right)\right]'=f\left(x\right).u'\left(x\right)+u\left(x\right).f'\left(x\right)\), ta cần tìm thằng \(u\left(x\right)\) này

Biến đổi 1 chút xíu: \(\frac{\left[f\left(x\right).u\left(x\right)\right]'}{u\left(x\right)}=\frac{u'\left(x\right)}{u\left(x\right)}f\left(x\right)+f'\left(x\right)\) (1) hay vào bài toán:

\(\left(\frac{x+2}{x+1}\right)f\left(x\right)+f'\left(x\right)=\frac{e^x}{x+1}\) (2)

Nhìn (1) và (2) thì rõ ràng ta thấy \(\frac{u'\left(x\right)}{u\left(x\right)}=\frac{x+2}{x+1}=1+\frac{1}{x+1}\)

Lấy nguyên hàm 2 vế:

\(ln\left(u\left(x\right)\right)=\int\left(1+\frac{1}{x+1}\right)dx=x+ln\left(x+1\right)\)

\(\Rightarrow u\left(x\right)=e^{x+ln\left(x+1\right)}=e^x.e^{ln\left(x+1\right)}=e^x.\left(x+1\right)\)

Vậy ta đã tìm xong hàm \(u\left(x\right)\)

Vế trái bây giờ cần biến đổi về dạng:

\(\left[f\left(x\right).e^x\left(x+1\right)\right]'=e^x\left(x+2\right).f\left(x\right)+f'\left(x\right).e^x\left(x+1\right).f'\left(x\right)\)

Để tạo thành điều này, ta cần nhân \(e^x\) vào 2 vế của biểu thức ban đầu:

\(e^x\left(x+2\right)f\left(x\right)+e^x\left(x+1\right)f'\left(x\right)=e^{2x}\)

\(\Leftrightarrow\left[f\left(x\right).e^x.\left(x+1\right)\right]'=e^{2x}\)

Lấy nguyên hàm 2 vế:

\(f\left(x\right).e^x\left(x+1\right)=\int e^{2x}dx=\frac{1}{2}e^{2x}+C\)

Do \(f\left(0\right)=\frac{1}{2}\Rightarrow f\left(0\right).e^0=\frac{1}{2}e^0+C\Rightarrow C=0\)

Vậy \(f\left(x\right).e^x\left(x+1\right)=\frac{1}{2}e^{2x}\Rightarrow f\left(x\right)=\frac{1}{2}\frac{e^{2x}}{e^x\left(x+1\right)}=\frac{e^x}{2\left(x+1\right)}\)

\(\Rightarrow f\left(2\right)=\frac{e^2}{2\left(2+1\right)}=\frac{e^2}{6}\)

11 tháng 4 2017

Giải bài 3 trang 126 sgk Giải tích 12 | Để học tốt Toán 12

Câu 1: Cho hàm số \(y=f\left(x\right)\), biết \(f’\left(x\right)=k\left(\frac{\sqrt{m}-m}{m^2}\right)\left(x-k\right)\) ( m,k là các hằng số ). Tìm tấc cả các giá trị nguyên của \(m\) thuộc \(\left[0;2020\right]\) để đồ thị hàm số \(y=f\left(x\right)\) có duy nhất một cực đại tại \(x=k\) \(\forall k\in\left[1;10\right]\). a) 1 b) 2019 c) 2020 d) 0 Câu 2: Cho hàm số \(y=f\left(x\right)\) liên tục trên \(R\). Biết...
Đọc tiếp

Câu 1: Cho hàm số \(y=f\left(x\right)\), biết \(f’\left(x\right)=k\left(\frac{\sqrt{m}-m}{m^2}\right)\left(x-k\right)\) ( m,k là các hằng số ). Tìm tấc cả các giá trị nguyên của \(m\) thuộc \(\left[0;2020\right]\) để đồ thị hàm số \(y=f\left(x\right)\) có duy nhất một cực đại tại \(x=k\) \(\forall k\in\left[1;10\right]\).
a) 1

b) 2019

c) 2020

d) 0

Câu 2: Cho hàm số \(y=f\left(x\right)\) liên tục trên \(R\). Biết \(f‘\left(0\right)=1,f\left(1\right)=0\), GTLN hàm số \(f\left(x\right)\) trên đoạn \(\left[0;1\right]\) bằng \(\frac{4}{27}\) tại điểm \(x=\frac{1}{3}\)\(\int\limits^1_0f”\left(x\right)f’\left(x\right)dx=-\frac{1}{2}\). Hỏi phương trình \(f\left(\sqrt[3]{x}\right)=\sqrt[3]{x}\) có bao nhiêu nghiệm

a) 3

b) 2

c) 1

d) 0

Câu 3: Cho hàm số \(y=f\left(x\right)\)\(f’\left(x\right)=x\left(x-2\right)\left(x^2-x\right)^{11}\). Hỏi hàm số \(y=f\left(\frac{2\sqrt{x-2}}{x-2}\right)\) đồng biến trên khoảng

0