K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 3 2021

\(f'\left(x\right)=4x\Rightarrow y=2x^2+1-4x\)

\(y'\left(x\right)=4x-4=0\Rightarrow x=1\)

Tham khảo:

Xét hàm số g(x) = f(x) − f(x + 0,5)

Ta có

g(0) = f(0) − f(0 + 0,5) = f(0) − f(0,5)

g(0,5) = f(0,5) − f(0,5 + 0,5) = f(0,5) − f(1) = f(0,5) − f(0)

(vì theo giả thiết f(0) = f(1)).

Do đó,

undefined

 
14 tháng 4 2017

\(\lim\limits_{x\rightarrow0}\left|f\left(x\right)\right|=\lim\limits_{x\rightarrow0}\left|x^2sin\dfrac{1}{x}\right|< \lim\limits_{x\rightarrow0}\left|x^2\right|=0\).
Vậy \(\lim\limits_{x\rightarrow0}f\left(x\right)=0\).
\(f\left(0\right)=A\).
Để hàm số liên tục tại \(x=0\) thì \(\lim\limits_{x\rightarrow0}f\left(x\right)=f\left(0\right)\Leftrightarrow A=0\).
Để xét hàm số có đạo hàm tại \(x=0\) ta xét giới hạn:
\(\lim\limits_{x\rightarrow0}\dfrac{f\left(x\right)-f\left(0\right)}{x-0}=\lim\limits_{x\rightarrow0}\dfrac{x^2sin\dfrac{1}{x}}{x}=\lim\limits_{x\rightarrow0}xsin\dfrac{1}{x}=0\).
Vậy hàm số có đạo hàm tại \(x=0\).

7 tháng 5 2016

Ta xét bảng sau đây :

x 1 2 x-1 2 x-2 f(x) 1-x 4-2x 5-3x x-1 4-2x 3-x x-1 2x-4 3x-5

Ta có ngay với \(x\ne1\) và \(x\ne2\)

\(f'\left(x\right)=\begin{cases}-3;x< 1\\-1;1< x< 2\\3;x>2\end{cases}\)

Bây giờ xét tại \(x=1\), ta có

\(\lim\limits_{\Delta x\rightarrow0^+}\frac{f\left(1+\Delta x\right)-f\left(1\right)}{\Delta x}=\lim\limits_{\Delta x\rightarrow0^+}\frac{3-\left(1+\Delta x\right)-2}{\Delta x}=\lim\limits_{\Delta x\rightarrow0^+}\frac{-\Delta x}{\Delta x}=-1\)

\(\lim\limits_{\Delta x\rightarrow0^-}\frac{f\left(1+\Delta x\right)-f\left(1\right)}{\Delta x}\ne\lim\limits_{\Delta x\rightarrow0^-}\frac{5-3\left(1+\Delta x\right)-2}{\Delta x}=\lim\limits_{\Delta x\rightarrow0^-}\frac{-3\Delta x}{\Delta x}=-3\)

Như vậy \(\lim\limits_{\Delta x\rightarrow0^+}\frac{f\left(1+\Delta x\right)-f\left(1\right)}{\Delta x}\ne\lim\limits_{\Delta x\rightarrow0^-}\frac{f\left(1+\Delta x\right)-f\left(1\right)}{\Delta x}\)

Nghĩa là không tồn tại đạo hàm của \(f\left(x\right)\) tại \(x=1\)

Tương tự không tồn tại đạo hàm của \(f\left(x\right)\) tại \(x=2\)

 
NV
2 tháng 9 2020

\(f\left(-x\right)=\left|-sinx-cosx\right|-\left|-sinx+cosx\right|\)

\(=\left|sinx+cosx\right|-\left|sinx-cosx\right|=-f\left(x\right)\)

\(\Rightarrow f\left(x\right)+f\left(-x\right)=0\)

\(\Rightarrow T=f\left(-\pi\right)+f\left(\pi\right)+f\left(-\frac{\pi}{2}\right)+f\left(\frac{\pi}{2}\right)+...+f\left(-\frac{\pi}{n}\right)+f\left(\frac{\pi}{n}\right)+f\left(0\right)\)

\(=0+0+...+0+f\left(0\right)=f\left(0\right)\)

\(=1-1=0\)

Giải sách bài tập Toán 11 | Giải sbt Toán 11 thì f(x) thỏa mãn được tất cả các điều kiện đã nêu