Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: f(x0)=x0+1
\(\lim\limits_{x\rightarrow x0}f\left(x\right)=x_0+1\)=f(x0)
=>HS f(x) liên tục tại điểm x0
b: Đồ thị hàm số là một đường thẳng liền mạch với mọi x thực
a, Hệ số góc của cát tuyến PQ là \(k_{PQ}=\dfrac{f\left(x\right)-f\left(x_0\right)}{x-x_0}\)
b, Khi \(x\rightarrow x_0\) thì vị trí của điểm \(Q\left(x;f\left(x\right)\right)\) trên đồ thị (C) sẽ tiến gần đến điểm \(P\left(x_0;f\left(x_0\right)\right)\) và khi \(x=x_0\) thì hai điểm này sẽ trùng nhau.
c, Nếu điểm Q di chuyển trên (C) tới điểm P mà \(k_{PQ}\) có giới hạn hữu hạn k thì cát tuyến PQ cũng sẽ tiến đến gần vị trí tiếp tuyến của đồ thị (C) tại điểm P. Vì vậy, giới hạn của cát tuyến QP sẽ là đường thẳng tiếp tuyến tại điểm P
a) Ta có \(f\left( x \right),g\left( x \right)\) là các hàm đa thức nên các hàm số \(f\left( x \right),g\left( x \right)\) liên tục trên \(\mathbb{R}\)
Vậy các hàm số \(f\left( x \right),g\left( x \right)\) liên tục tại \(x = 2\)
b) \(\begin{array}{l}f\left( x \right) + g\left( x \right) = {x^3} + {x^2} + x + 1\\f\left( x \right) - g\left( x \right) = {x^3} - {x^2} + x - 1\\f\left( x \right).g\left( x \right) = \left( {{x^3} + x} \right)\left( {{x^2} + 1} \right) = {x^5} + 2{x^3} + x\\\frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{{x^3} + x}}{{{x^2} + 1}} = \frac{{x\left( {{x^2} + 1} \right)}}{{{x^2} + 1}} = x\end{array}\)
Ta có \(f\left( x \right) + g\left( x \right);f\left( x \right) - g\left( x \right);f\left( x \right).g\left( x \right);\frac{{f\left( x \right)}}{{g\left( x \right)}}\) là các hàm đa thức nên các hàm số \(f\left( x \right),g\left( x \right)\) liên tục trên \(\mathbb{R}\)
Vậy các hàm số \(f\left( x \right) + g\left( x \right);f\left( x \right) - g\left( x \right);f\left( x \right).g\left( x \right);\frac{{f\left( x \right)}}{{g\left( x \right)}}\) liên tục tại \(x = 2\)
a) Đồ thị hàm số trên mỗi đoạn là như nhau
b) \(f\left( {{x_0} + T} \right) = f\left( {{x_0} - T} \right) = f\left( {{x_0}} \right)\)
Theo em ý kiến của bạn Nam là đúng.
Ta có: Hàm số \(y = f\left( x \right)\) liên tục tại điểm \({x_0}\) nên \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)
Hàm số \(y = g\left( x \right)\) không liên tục tại \({x_0}\) nên \(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) \ne g\left( {{x_0}} \right)\)
Do đó \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) + \mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) \ne f\left( {{x_0}} \right) + g\left( {{x_0}} \right)\)
Vì vậy hàm số không liên tục tại x0.
Vì hai làm lượng giác \(y = \sin x,y = \cos x\) liên tục trên \(\mathbb{R}\)
\( \Rightarrow f\left( x \right) = \sin x + \cos x\) liên tục trên \(\mathbb{R}\)
+) Với mỗi \({x_0} \in \left( { - \infty ;2} \right)\) có \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \left( {x - 1} \right) = {x_0} - 1 = f\left( {{x_0}} \right)\)
Do đó hàm số \(f\left( x \right)\) liên tục tại \({x_0} \in \left( { - \infty ;2} \right).\)
+) Với mỗi \({x_0} \in \left( {2; + \infty } \right)\) có \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \left( { - x} \right) = - {x_0} = f\left( {{x_0}} \right)\)
Do đó hàm số \(f\left( x \right)\) liên tục tại \({x_0} \in \left( {2; + \infty } \right).\)
+) Với mỗi \({x_0} = 2\) có \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {x - 1} \right) = 2 - 1 = 1;\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( { - x} \right) = - 2\)
\( \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right)\) do đó không tồn tại \(\mathop {\lim }\limits_{x \to 2} f\left( x \right).\)
Vậy hàm số \(f\left( x \right)\) gián đoạn tại \({x_0} = 2\) nên hàm số \(f\left( x \right)\) không liên tục trên \(\mathbb{R}.\)
a) Với mọi điểm \({x_0} \in \left( {1;2} \right)\), ta có: \(f\left( {{x_0}} \right) = {x_0} + 1\).
\(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \left( {x + 1} \right) = {x_0} + 1\).
Vì \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right) = {x_0} + 1\) nên hàm số \(y = f\left( x \right)\) liên tục tại mỗi điểm \({x_0} \in \left( {1;2} \right)\).
b) \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {x + 1} \right) = 2 + 1 = 3\).
\(f\left( 2 \right) = 2 + 1 = 3\).
\( \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = f\left( 2 \right)\).
c) \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x + 1} \right) = 1 + 1 = 2\)
\(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = k \Leftrightarrow 2 = k \Leftrightarrow k = 2\)
Vậy với \(k = 2\) thì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = k\).
Trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\), \(f\left( x \right) = \frac{{{x^2} - 2x}}{x}\) là hàm phân thức hữu tỉ nên liên tục trên từng khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\).
Ta có: \(f\left( 0 \right) = a\)
\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2} - 2x}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{x\left( {x - 2} \right)}}{x} = \mathop {\lim }\limits_{x \to 0} \left( {x - 2} \right) = 0 - 2 = - 2\)
Để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) thì hàm số \(y = f\left( x \right)\) phải liên tục tại điểm \({x_0} = 0\). Khi đó:
\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right) \Leftrightarrow a = - 2\).
Vậy với \(a = - 2\) thì hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).
a) Ta có \(f\left( {{x_0}} \right) = {x_0} + 1;\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \left( {x + 1} \right) = \mathop {\lim }\limits_{x \to {x_0}} x + 1 = {x_0} + 1\)
\( \Rightarrow \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)
Vậy hàm số \(f\left( x \right)\) liên tục tại \({x_0}.\)
b) Dựa vào đồ thị hàm số ta thấy: Đồ thị hàm số là một đường thẳng liền mạch với mọi giá trị \(x \in \mathbb{R}.\)