K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì, \({x_n} >  - 1\) và \({x_n} \to  - 1\). Khi đó \(f\left( {{x_n}} \right) = x_n^2 + 2\)

Ta có: \(\lim f\left( {{x_n}} \right) = \lim \left( {x_n^2 + 2} \right) = \lim x_n^2 + \lim 2 = {\left( { - 1} \right)^2} + 2 = 3\)

Vậy \(\mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x \right) = 3\).

Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì, \({x_n} <  - 1\) và \({x_n} \to  - 1\). Khi đó \(f\left( {{x_n}} \right) = 1 - 2{x_n}\).

Ta có: \(\lim f\left( {{x_n}} \right) = \lim \left( {1 - 2{x_n}} \right) = \lim 1 - \lim \left( {2{x_n}} \right) = \lim 1 - 2\lim {x_n} = 1 - 2.\left( { - 1} \right) = 3\)

Vậy \(\mathop {\lim }\limits_{x \to  - {1^ - }} f\left( x \right) = 3\).

b) Vì \(\mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {1^ - }} {\rm{ }}f\left( x \right) = 3\) nên \(\mathop {\lim }\limits_{x \to  - 1} f\left( x \right) = 3\).