Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt t = f ( f ( x ) - 1 ) - 2 phương trình trở thành:
f ( t ) = 1 ⇔ t 4 - 4 t 2 + 1 = 1 ⇔ t = 0 ; t = ± 2
TH1: Nếu
t = 0 ⇔ f ( f ( x ) - 1 ) - 2 = 0 ⇔ f ( f ( x ) - 1 ) = 2
Đặt a=f(x)-1 phương trình trở thành:
f ( a ) = 2 ⇔ a 4 - 4 a 2 - 1 = 0 ⇔ a = ± 2 + 5
Nhận xét: Xét hàm số y = f ( x ) - 1 = x 4 - 4 x 2 có y c d = y ( 0 ) = 0 ; y c t = y ± 2 = - 4
Với a ∈ - 4 ; 0 phương trình y = a có bốn nghiệm thực phân biệt. Với a = 0 phương trình y = a có hai nghiệm thực phân biệt. Với a < -4 phương trình y = a vô nghiệm.
Áp dụng cho trường này có 2 + 4 = 6 nghiệm.
TH2: Nếu
t = - 2 ⇔ f ( f ( x ) - 1 ) - 2 = - 2 ⇔ f ( f ( x ) - 1 ) = 0
Đặt a=f(x)-1 phương trình trở thành:
f ( a ) = 0 ⇔ a 4 - 4 a 2 + 1 = 0 ⇔ a = ± 2 + 3
Trường hợp này có 2 + 2 + 4 + 4 = 12 nghiệm.
TH3: Nếu t = 2 ↔ f ( f ( x ) - 1 ) = 4 Đặt a=f(x)-1 phương trình trở thành:
f ( a ) = 4 ⇔ a 4 - a = ± 4 a 2 - 3 = 0 ⇔ a = ± 2 + 7
Trường hợp này có 2 + 4 = 6 nghiệm.
Vậy phương trình đã cho có tất cả 24 nghiệm thực phân biệt.
Chọn đáp án A.
Ta có
Do đó hàm số f(x) đồng biến trên R. Với một hàm số f(x) đồng biến trên R ta có tính chất sau:
Thật vậy
+) Nếu
(vô lí);
+) Nếu
(vô lí).
+) Nếu
(thỏa mãn)/
Từ ba khả năng trên ta có điều phải chứng minh. Áp dụng tính chất này ta có:
Phương trình đã cho có ba nghiệm thực phân biệt khi và chỉ khi (*) có ba nghiệm thực phân biệt
Có tất cả 20 số nguyên thỏa mãn.
Chọn đáp án A.
Đáp án D
Hàm số y = f ( x ) đạt cực tiểu tại x 0 = 0
Hàm số y = f ( x ) có ba điểm cực trị.
Phương trình f ( x ) = 0 có 4 nghiệm phân biệt
Hàm số đạt giá trị nhỏ nhất là -2 trên đoạn [-2;2]
Đáp án D
Định lí: “Nếu hàm số y = f x liên tục trên a ; b và f a . f b < 0 thì tồn tại ít nhất một điểm c ∈ a ; b sao cho f c = 0 ”.
Mệnh đề 1: SAI ở giả thiết (a;b).
Mệnh đề 2: Nếu hàm số y=f(x) liên tục trên a ; b
và f a . f b < 0 thì tồn tại ít nhất một điểm c ∈ a ; b sao cho c hay f x = 0 là nghiệm của phương trình f(x)=0 nên mệnh đề 2 ĐÚNG.
Mệnh đề 3: Nếu hàm số y=f(x) liên tục, đơn điệu trên a ; b và f a . f b < 0 thì đồ thị hàm số y=f(x) cắt trục Ox tại duy nhất một điểm thuộc khoảng (a;b) nên f(x)=0 có nghiệm duy nhất trên (a;b). Do đó mệnh đề 3 ĐÚNG
Đáp án là D
Từ đồ thị f ’(x) ta lập được BBT của f(x)
=> Có 4 nghiệm là nhiều nhất
Đáp án C
Cho a = 0 , b = − 3 , c = 0 ⇒ f x = x 3 − 3 x 2 = 0 có 3 nghiệm phân biệt.
Ta có:
f ' x = 3 x 2 − 6 x f ' ' x = 6 x − 6 ⇒ 2 x 3 − 3 x 2 6 x − 6 = 3 x 2 − 6 x 2 ⇔ 12 x 2 x − 3 x − 1 = 9 x 2 x − 2 2 ⇔ x = 0 4 x 2 − 4 x + 3 = 3 x 2 − 4 x + 4 ⇔ x = 0 x = 4