K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2019

Đáp án C

TXĐ: D=R

  lim x → 0 x 2 x = lim x → 0 x= 0 = f 0

Vậy hàm số liên tục tại x=0

Hàm số liên tục khi x<1

Hàm số liên tục khi x>1

Tại x=1 ta có:

f(1)=1

lim x → 1 − x 2 x = lim x → 1 − x= 1 = f 1

lim x → 1 + x = 1 = f 1

lim x → 1 − f x = lim x → 1 + f x =f 1

Vậy hàm số liên tục tại x=1

Hàm số liên tục trên R

12 tháng 1 2018

Đáp án A

Mệnh đề đúng 1,3

8 tháng 2 2018

22 tháng 1 2018

Đáp án là B

17 tháng 11 2017

Đáp án B. lim x → 0 e a x - e 3 x 2 x = lim x → 0 e a x - 1 - e 3 x + 1 2 x = lim x → 0 e a x - 1 2 x - lim x → 0 e 3 x - 1 2 x = a - 3 2

Chú ý giới hạn đặc biệt sau:  lim u → 0 e u - 1 u = 1 .

lim x → 0 e a x - 1 a x = 1 ⇔ lim x → 0 e a x - 1 2 x = a 2  và lim x → 0 e 3 x - 1 3 x = 1 ⇔ lim x → 0 e 3 x - 1 2 x = 3 2  

Do đó   lim x → 0 e a x - e 3 x 2 x = lim x → 0 e a x - 1 - e 3 x + 1 2 x = lim x → 0 e a x - 1 2 x - lim x → 0 e 3 x - 1 2 x = a - 3 2

Mà hàm số liên tục tại x = 0 ⇒ lim x → 0 f x = f 0 ⇔ a - 3 2 = 1 2 ⇔ a = 4 .

21 tháng 5 2018

Đáp án A

Hàm số f x có đạo hàm tại điểm x 0  liên tục tại điểm đó =>(1) đúng.

Hàm số  f x   liên tục tại điểm  x 0   thì  f x chưa thể có đạo hàm tại điểm đó =>(2) sai.

Hàm số  f x không liên tục tại x = x 0 thì f x   không có đạo hàm tại điểm đó =>(3) đúng.

Với ý (4), chiều đi đúng nhưng chiều ngược lại chưa chắc xảy ra

8 tháng 12 2017

Đáp án C

23 tháng 9 2017

Đáp án A.

Mệnh đề 3 sai ví dụ hàm số y=|x| liên tục tại x = 0 nhưng không có đạo hàm tại điểm đó.

 

Mệnh đề 4 đúng vì nếu hàm số y=f(x) có đạo hàm trên [a;b] thì hàm số liên tục trên [a;b] do đó hàm số có nguyên hàm trên [a;b]

16 tháng 9 2018

27 tháng 11 2019

Chọn đáp án C

30 tháng 3 2019

Mặt khác hàm số có đạo hàm tại điểm

Chọn A