K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 3 2021

1. Hàm không liên tục tại  \(x=-1\) nên đáp án A sai

2. Hàm liên tục tại \(x=0,5\)

3. Đề thiếu

4. \(\lim\limits_{x\rightarrow-2^-}f\left(x\right)=3.\left(-2\right)-5=-11\)

\(\lim\limits_{x\rightarrow-2^+}f\left(x\right)=-2a-1\)

Hàm liên tục tại x=-2 khi: 

\(-2a-1=-11\Rightarrow a=-5\)

26 tháng 11 2017

Chọn B.

D = [-2; 2]

F(x) không xác định tại x = 3

 ; f(-2) = 0. Vậy hàm số liên tục tại x = -2

Vậy không tồn tại giới hạn của hàm số khi  x 2.

22 tháng 4 2019

Chọn C.

Với  ta có hàm số  liên tục trên khoảng  và , (1).

Với  ta có  và   nên hàm số liên tục tại , (2)

Từ (1) và (2) ta có hàm số liên tục trên R.

5 tháng 3 2018

Đáp án C

Tập xác định:  D = R   \   { 1 }

lim x → 1 x - 1 x - 1 = lim x → 1 1 x + 1 = 1 2

Hàm số không xác định tại x= 1. Nên hàm số gián đoạn tại x=1.

21 tháng 7 2018

Chọn C.

Tập xác định : D = R\ {1}

Hàm số không xác định tại x = 1 Nên hàm số gián đoạn tại x = 1.

22 tháng 6 2017

- Tập xác định: D = R/ {1}.

Đề kiểm tra 45 phút Đại số 11 Chương 4 có đáp án (Đề 3)

- Hàm số không xác định tại x = 1 nên hàm số gián đoạn tại x = 1.

Chọn C.

18 tháng 7 2019

- Tập xác định: D = R\ {1}.

Đề kiểm tra 45 phút Đại số 11 Chương 4 có đáp án (Đề 4)

- Hàm số không xác định tại x = 1 nên hàm số gián đoạn tại x = 1.

Chọn C.

9 tháng 1 2017

Đáp án A

(1) Nếu hàm số f(x) có đạo hàm tại điểm x = x 0 thì f(x) liên tục tại điểm đó. Đây là mệnh đề đúng.

(2) Nếu hàm số f (x) liên tục tại điểm x = x 0  thì f(x) có đạo hàm tại điểm đó.

Phản ví dụ

Lấy hàm f ( x ) = x  ta có D= R nên hàm số f(x) liên tục trên R.

Nhưng ta có  l i m x → 0 + f ( x ) - f ( 0 ) x - 0 = l i m x → 0 + x - 0 x - 0 = l i m x → 0 + x - 0 x - 0 = 1 l i m x → 0 - f ( x ) - f ( 0 ) x - 0 = l i m x → 0 - x - 0 x - 0 = l i m x → 0 - - x - 0 x - 0 = - 1

Nên hàm số không có đạo hàm tại x = 0.

Vậy mệnh đề (2) là mệnh đề sai.

(3) Nếu f(x) gián đoạn tại  x = x 0  thì chắc chắn f(x) không có đạo hàm tại điểm đó.

Vì (1) là mệnh đề đúng nên ta có f(x)  không liên tục tại  x = x 0  thì f(x) không có đạo hàm tại điểm đó.

Vậy (3) là mệnh đề đúng.

19 tháng 2 2018

+) (1) Nếu hàm số f(x) có đạo hàm tại điểm Xét ba mệnh đề sau:

(1) Nếu hàm số f(x) có đạo hàm tại điểm  x   =   x 0  thì f(x) liên tục tại điểm đó.

(2) Nếu hàm số f(x) liên tục tại điểm  x   =   x 0  thì f(x) có đạo hàm tại điểm đó.

(3) Nếu f(x) gián đoạn tại  x   =   x 0 thì chắc chắn f(x) không có đạo hàm tại điểm đó.

- Trong ba câu trên: thì f(x) liên tục tại điểm đó. Đây là mệnh đề đúng.

+) (2) Nếu hàm số f(x) liên tục tại điểm  x   =   x 0  thì f(x) có đạo hàm tại điểm đó.Đây là mệnh đề sai.

Phản ví dụ:

- Lấy hàm f(x) = |x| ta có D = R nên hàm số f(x) liên tục trên R

- Nhưng ta có

Đề kiểm tra 15 phút Đại số 11 Chương 5 có đáp án (Đề 1)

- Nên hàm số không có đạo hàm tại x = 0.

- Vậy mệnh đề (2) là mệnh đề sai.

+) (3) Nếu f(x) gián đoạn tại  x   =   x 0  thì chắc chắn f(x) không có đạo hàm tại điểm đó.

- Vậy (3) là mệnh đề đúng.Vì (1) là mệnh đề đúng nên ta có f(x) không liên tục tại  x   =   x 0  thì f(x) không có đạo hàm tại điểm đó.

- Vậy (3) là mệnh đề đúng.

Chọn A.