K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2018

23 tháng 10 2018

Đáp án C

Bảng biến thiên của hàm số f(x) là

Hàm số  f x  là hàm số chẵn trên  ℝ nên đồ thị của hàm số nhận trục tung làm trục đối xứng. Do đó phương trình  f ( x ) + m = 0 có bốn nghiệm thực phân biệt khi và chỉ khi phương trình f ( x ) + m = 0 có hai nghiệm dương phân biệt hay phương trình f ( x ) = - m  có hai nghiệm dương phân biệt

⇔ 1 < - m < e 4 ⇔ - e 4 < m < - 1

 

27 tháng 12 2019

17 tháng 1 2019

Đáp án C

Với f x > 0 , ∀ x ∈ ℝ . Xét biểu thức  f ' x f x = 2 - 2 x *  

Lấy nguyên hàm 2 vế (*), ta được  ∫ d f x f x = ∫ 2 - 2 x d x

⇔ ∫ d f x f x = - x 2 + 2 x + C ⇔ ln f x = - x 2 + 2 x + C  

Mà f(0) =1 suy ra C = lnf(0) = ln1 = 0. Do đó  f x = e - x 2 + 2 x  

Xét hàm số  f x = e - x 2 + 2 x  trên - ∞ ; + ∞ , có  f ' x = - 2 x + 2 = 0 ⇔ x = 1

Tính giá trị f 1 = e ; lim x → - ∞ f x = 0 ; lim x → - ∞ f x = 0  

Suy ra để phương trình f(x) = m có hai nghiệm thực phân biệt  ⇔ 0 < m < e .

23 tháng 10 2017

Đáp án B

31 tháng 7 2017

Đáp án C

f ( x ) − 1 = m ⇔ f ( x ) = m + 1  có hai nghiệm khi và chỉ khi  m + 1 = − 1 m + 1 > 0 ⇔ m = − 2 m > − 1

3 tháng 6 2018

Chọn đáp án C

Phương pháp

Số nghiệm của phương trình f(x)=m là số giao điểm của đồ thị hàm số y=f(x) và y=m song song với trục hoành.

Cách giải

Ta có: 

Số nghiệm của phương trình f(x)=m là số giao điểm của đồ thị hàm số y=f(x) và y=m+1 song song với trục hoành.

Từ BBT ta thấy để phương trình f(x)-1=m có đúng 2 nghiệm thì

15 tháng 11 2018

17 tháng 6 2018