Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Ta có lim x → 0 f x = lim x → 0 e a x - 1 x = lim x → 0 e a x - 1 a x a = a vì lim x → 0 e a x - 1 a x = 1
Vậy để hàm số f(x) liên tục tại x 0 = x ⇔ lim x → 0 f x = f 0 ⇔ a = 1 2 .
Đáp án B. lim x → 0 e a x - e 3 x 2 x = lim x → 0 e a x - 1 - e 3 x + 1 2 x = lim x → 0 e a x - 1 2 x - lim x → 0 e 3 x - 1 2 x = a - 3 2
Chú ý giới hạn đặc biệt sau: lim u → 0 e u - 1 u = 1 .
lim x → 0 e a x - 1 a x = 1 ⇔ lim x → 0 e a x - 1 2 x = a 2 và lim x → 0 e 3 x - 1 3 x = 1 ⇔ lim x → 0 e 3 x - 1 2 x = 3 2
Do đó lim x → 0 e a x - e 3 x 2 x = lim x → 0 e a x - 1 - e 3 x + 1 2 x = lim x → 0 e a x - 1 2 x - lim x → 0 e 3 x - 1 2 x = a - 3 2
Mà hàm số liên tục tại x = 0 ⇒ lim x → 0 f x = f 0 ⇔ a - 3 2 = 1 2 ⇔ a = 4 .
Đáp án D
Ta có lim x → 2 − f x = lim x → 2 − 2 x 2 − 7 x + 6 x − 2 = lim x → 2 − 2 x 2 − 7 x + 6 x − 2 = lim x → 2 − − 2 x − 3 = − 1
Và lim x → 2 − f x = lim x → 2 − a + 1 − x 2 + x = a − 1 4 ; f 2 = a − 1 4 .
Theo bài ra, ta có lim x → 2 + f x = lim x → 2 − f x = f 2 ⇒ a = − 3 4
Do đó, bất phương trình − x 2 + a x + 7 4 > 0 ⇔ − x 2 − 3 4 x + 7 4 > 0 ⇔ − 7 4 < x < 1.
Đáp án D
Định lí: “Nếu hàm số y = f x liên tục trên a ; b và f a . f b < 0 thì tồn tại ít nhất một điểm c ∈ a ; b sao cho f c = 0 ”.
Mệnh đề 1: SAI ở giả thiết (a;b).
Mệnh đề 2: Nếu hàm số y=f(x) liên tục trên a ; b
và f a . f b < 0 thì tồn tại ít nhất một điểm c ∈ a ; b sao cho c hay f x = 0 là nghiệm của phương trình f(x)=0 nên mệnh đề 2 ĐÚNG.
Mệnh đề 3: Nếu hàm số y=f(x) liên tục, đơn điệu trên a ; b và f a . f b < 0 thì đồ thị hàm số y=f(x) cắt trục Ox tại duy nhất một điểm thuộc khoảng (a;b) nên f(x)=0 có nghiệm duy nhất trên (a;b). Do đó mệnh đề 3 ĐÚNG
Đáp án C.
Hàm số liên tục nếu:
lim x → − 2 + f x = lim x → − 2 − f x = f 2 ⇔ 3. − 2 − 5 = − 2 a − 1 ⇔ a = 5.