K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2018

Đáp án C.

Hàm số liên tục nếu:

lim x → − 2 + f x = lim x → − 2 − f x = f 2 ⇔ 3. − 2 − 5 = − 2 a − 1 ⇔ a = 5.

12 tháng 1 2018

Đáp án A

Mệnh đề đúng 1,3

28 tháng 8 2017

30 tháng 8 2019

Đáp án B

Ta có lim x → 0 f x = lim x → 0 e a x - 1 x = lim x → 0 e a x - 1 a x a = a  vì  lim x → 0 e a x - 1 a x = 1

Vậy để hàm số f(x) liên tục tại  x 0 = x ⇔ lim x → 0 f x = f 0 ⇔ a = 1 2 .

8 tháng 2 2018

30 tháng 3 2019

Mặt khác hàm số có đạo hàm tại điểm

Chọn A

22 tháng 1 2018

Đáp án là B

17 tháng 11 2017

Đáp án B. lim x → 0 e a x - e 3 x 2 x = lim x → 0 e a x - 1 - e 3 x + 1 2 x = lim x → 0 e a x - 1 2 x - lim x → 0 e 3 x - 1 2 x = a - 3 2

Chú ý giới hạn đặc biệt sau:  lim u → 0 e u - 1 u = 1 .

lim x → 0 e a x - 1 a x = 1 ⇔ lim x → 0 e a x - 1 2 x = a 2  và lim x → 0 e 3 x - 1 3 x = 1 ⇔ lim x → 0 e 3 x - 1 2 x = 3 2  

Do đó   lim x → 0 e a x - e 3 x 2 x = lim x → 0 e a x - 1 - e 3 x + 1 2 x = lim x → 0 e a x - 1 2 x - lim x → 0 e 3 x - 1 2 x = a - 3 2

Mà hàm số liên tục tại x = 0 ⇒ lim x → 0 f x = f 0 ⇔ a - 3 2 = 1 2 ⇔ a = 4 .

23 tháng 8 2017

Đáp án D

Ta có lim x → 2 − f x = lim x → 2 − 2 x 2 − 7 x + 6 x − 2 = lim x → 2 − 2 x 2 − 7 x + 6 x − 2 = lim x → 2 − − 2 x − 3 = − 1  

Và lim x → 2 − f x = lim x → 2 − a + 1 − x 2 + x = a − 1 4 ; f 2 = a − 1 4 .  

Theo bài ra, ta có lim x → 2 + f x = lim x → 2 − f x = f 2 ⇒ a = − 3 4  

Do đó, bất phương trình − x 2 + a   x + 7 4 > 0 ⇔ − x 2 − 3 4 x + 7 4 > 0 ⇔ − 7 4 < x < 1.  

15 tháng 7 2018

Đáp án D

Định lí: “Nếu hàm số y = f x  liên tục trên a ; b  và f a . f b < 0  thì tồn tại ít nhất một điểm c ∈ a ; b  sao cho f c = 0 ”.

Mệnh đề 1: SAI ở giả thiết (a;b).

Mệnh đề 2: Nếu hàm số y=f(x) liên tục trên  a ; b

và f a . f b < 0 thì tồn tại ít nhất một điểm c ∈ a ; b  sao cho c hay  f x = 0 là nghiệm của phương trình f(x)=0 nên mệnh đề 2 ĐÚNG.

Mệnh đề 3: Nếu hàm số y=f(x) liên tục, đơn điệu trên a ; b và f a . f b < 0  thì đồ thị hàm số y=f(x) cắt trục Ox tại duy nhất một điểm thuộc khoảng (a;b) nên f(x)=0 có nghiệm duy nhất trên (a;b). Do đó mệnh đề 3 ĐÚNG