K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2018

áp án B

Ta có: log 3 x + 1 y + 1 y + 1 = 9 − x − 1 y + 1 ⇔ y + 1 log 3 x + 1 y + 1 + x − 1 y + 1 = 9

⇔ y + 1 log 3 c + 1 y + 1 + x + 1 y + 1 − 2 y = 11

⇔ y + 1 log 3 c + 1 y + 1 − 2 = 9 − x + 1 y + 1       *

 Nếu   x + 1 y + 1 > 9 ⇒ V T * > 0 ;   V P * < 0

Ngược lại nếu   x + 1 y + 1 < 9 ⇒ V T * < 0 ;   V P * > 0

Do đó   * ⇔ x + 1 y + 1 = 9 ⇔ x y + x + y = 8

Khi đó   P = x + y 3 − 3 x y x + y − 57 x + y = x + y 3 − 3 8 − x − y x + y − 57 x + y

Đặt   t = x + y ≥ 2 ⇒ f t = t 3 − 3 8 − t t − 57 t = t 3 + 3 t 2 − 81 t

⇒ f ' t = 3 t 2 + 6 t − 81 = 0 ⇒ t = − 1 + 2 7 ⇒ P min = f − 1 + 2 7 = 83 − 112 7 ⇒ a + b = − 29

2 tháng 8 2019

Chọn đáp án C.

12 tháng 1 2018

Đáp án A

Mệnh đề đúng 1,3

27 tháng 12 2018

10 tháng 11 2017

1 tháng 5 2019

Chọn A

17 tháng 1 2019

Đáp án C

Với f x > 0 , ∀ x ∈ ℝ . Xét biểu thức  f ' x f x = 2 - 2 x *  

Lấy nguyên hàm 2 vế (*), ta được  ∫ d f x f x = ∫ 2 - 2 x d x

⇔ ∫ d f x f x = - x 2 + 2 x + C ⇔ ln f x = - x 2 + 2 x + C  

Mà f(0) =1 suy ra C = lnf(0) = ln1 = 0. Do đó  f x = e - x 2 + 2 x  

Xét hàm số  f x = e - x 2 + 2 x  trên - ∞ ; + ∞ , có  f ' x = - 2 x + 2 = 0 ⇔ x = 1

Tính giá trị f 1 = e ; lim x → - ∞ f x = 0 ; lim x → - ∞ f x = 0  

Suy ra để phương trình f(x) = m có hai nghiệm thực phân biệt  ⇔ 0 < m < e .

15 tháng 11 2018

13 tháng 7 2018

Đáp án D

Hàm số f(x) có dạng f ( x ) = ( x + 2 ) ( x - 1 ) 2 Giao với trục Oy tại (0, 2) .

=> 2<m<4.

Chọn phương án D.