K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
SH
1
6 tháng 12 2023
\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}\dfrac{1+3x}{\sqrt{2x^2+3}}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{3+\dfrac{1}{x}}{\sqrt{2+\dfrac{3}{x^2}}}=\dfrac{3+0}{\sqrt{2+0}}=\dfrac{3}{\sqrt{2}}\)
\(=\dfrac{3\sqrt{2}}{2}\)
AH
Akai Haruma
Giáo viên
17 tháng 5 2020
Lời giải:
\(\lim\limits_{x\to 1-}f(x)=\lim\limits_{x\to 1-}\left(\frac{1}{x^3-1}-\frac{1}{x-1}\right)=\lim\limits_{x\to 1-}\frac{-x(x+1)}{(x-1)(x^2+x+1)}\)
\(=\lim\limits_{x\to 1-}\frac{x(x+1)}{x^2+x+1}.\lim\limits_{x\to 1-}\frac{1}{1-x}=\frac{2}{3}.(+\infty)=+\infty \)
Đáp án D
Chọn A.
Ta có:
Khi
Vậy