K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

\(3x^2+5\ge5>0\forall x\)

nên f(x)>0 với mọi x

23 tháng 11 2018

Vẽ đồ thị giùm nha! Giúp câu chứng minh thôi. Ở đây vẽ đồ thị xấu lém =,=

Ta có: \(y=f\left(x\right)=3x^2+5\)

Ta có: \(x^2\ge0\forall x\) (luôn đúng)

Nên \(3x^2\ge0\). do đó \(y=f\left(x\right)=3x^2+5\ge5\forall x\)

Vậy hàm số \(y=f\left(x\right)=3x^2+5\) luôn dương với mọi x. (đpcm)

14 tháng 12 2017

ta có hàm số y = f(x) = 3x2 + 5

vì x2 \(\ge\)\(\forall\)\(\Rightarrow\)3x2 + 5 \(\ge\)5 hay y \(\ge\)5

Vậy với mọi giá trị của x thì hàm số đã cho luôn nhận giá trị dương

Vì x2>0 ( với mọi x )  nên 3x2+5 > 0

Vậy f(x) = 3x2 + 5 luôn nhận giá trị dương với mọi giá trị x ( đpcm ).

  XONG RỒI ĐÓ...

12 tháng 12 2017

Với mọi \(x\in R\) , ta có \(3x^2\ge0\) suy ra \(3x^2+5>5\). Vì vậy với mọi giá trị x thì hàm số đã cho nhận giá trị dương.

29 tháng 12 2021

a: f(0)=-4,5

f(-1)=4,5