K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2021

Dễ thấy tiệm cân đứng của \(\left(C\right)\) là \(d_1:x+1=0\), tiệm cân ngang là \(d_2:y-2=0\)

Vì \(M\in\left(C\right)\) nên  \(M\left(x_0;\frac{2x_0-1}{x_0+1}\right)\), ta có:

\(d\left(M,d_1\right)=\left|x_0+1\right|;d\left(M,d_2\right)=\left|\frac{2x_0-1}{x_0+1}-2\right|=\left|\frac{-3}{x_0+1}\right|\)

Suy ra \(d\left(M,d_1\right)+d\left(M,d_2\right)=\left|x_0+1\right|+\left|\frac{-3}{x_0+1}\right|\ge2\sqrt{\left|x_0+1\right|.\left|\frac{-3}{x_0+1}\right|}=2\sqrt{3}\)

Đạt được khi \(M\left(\sqrt{3}-1;2-\sqrt{3}\right)\) hoặc \(M\left(-\sqrt{3}-1;2+\sqrt{3}\right)\)

15 tháng 2 2018

Đáp án A

Kết luận M(4;3).

8 tháng 12 2018

Đáp án C

1 tháng 7 2019

Đáp án B

Phương pháp tự luận

Phương pháp trắc nghiệm

 

10 tháng 9 2019

Đáp án C

20 tháng 7 2018

+ Gọi  M ( x 0 ;   2 + 3 x 0 - 1 ) ∈ C ,   x 0 ≠ 1 .

Phương trình tiếp tuyến tại M  có dạng

∆ :   y =   - 3 x 0 - 1 2 ( x - x 0 ) + 2 + 3 x 0 - 1

 

+ Giao điểm của ∆   với tiệm cận đứng là  A ( 1 ;   2 + 6 x 0 - 1 )

+ Giao điểm của ∆   với tiệm cận ngang là  B( 2x0-1; 2).

Ta có  S ∆ I A B = 1 2 I A . I B = 1 2 . 6 x 0 - 1 . 2 . x 0 - 1 = 2 . 3 = 6

Tam giác IAB vuông tại I có diện tích không đổi nên  chu vi tam giác IAB đạt giá trị nhỏ nhất khi

IA=IB 

 

+Với x 0 = 1 + 3   thì phương trình tiếp tuyến là ∆ :   y = - x + 3 + 2 3  . Suy ra

d O , ∆ = 3 + 2 3 2

+ Với   x 0 = 1 - 3 thì phương trình tiếp tuyến là  ∆ :   y = - x + 3 - 2 3 . Suy ra

d O , ∆ = - 3 + 2 3 2

Vậy khoảng cách lớn nhất là  3 + 2 3 2   gần với giá trị 5 nhất trong các đáp án.

Chọn D.

22 tháng 9 2019

Đáp án B

27 tháng 5 2019

Đáp án D

15 tháng 8 2017

Đáp án D

22 tháng 11 2017

Đáp án A

Gọi

 với a   ≢ 1 .

Tiệm cận đứng của (C) là x-1.

Ta có . Vậy .

16 tháng 4 2017

Đáp án D