K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2019

 

Chọn D.

14 tháng 12 2017

Đáp án A

 

 

 

 

 

 

 

 

 

 

3 tháng 5 2016

a) (C) có 2 tiệm cận xiên là x = -1 và y = x + 1

I là tâm đối xứng \(\Rightarrow I\left(-1;0\right)\) (I là giao của 2 tiệm cận)

Xét \(M\left(x_0;f\left(x_0\right)\right)\in\left(C\right)\). Tiếp tuyến \(\Delta\) tại M của (C) :

\(y=y'\left(x_0\right)\left(x-x_0\right)+y_0=\frac{x_0^2+2x_0}{\left(x_0+1\right)^2}\left(x-x_0\right)+\frac{x^2_0+2x_0+2}{x_0+1}\)

 \(\Delta\) cắt tiệm cận đứng tại \(A\left(-1;\frac{2}{x_0+1}\right)\) và cắt tiệm cận xiên tại \(B\left(2x_0+1;2x_0+2\right)\)\(\begin{cases}\frac{x_A+x_B}{2}=x_0=x_M\\\frac{y_A+y_B}{2}=\frac{x_0^2+2x_0+2}{x_0+1}=y_M\end{cases}\)\(\Rightarrow\) M là trung điểm của ABGọi H là hình chiếu của B lên IA\(\Rightarrow BH=2\left|x_0+1\right|\) mà \(IA=\frac{2}{\left|x_0+1\right|}\) suy ra \(S_{\Delta ABI}=\frac{1}{2}BH.IA=2\) => điều cần chứng minh b) Ta có : \(AB^2=4\left[2\left(x+1\right)^2+\frac{1}{\left(x+1\right)^2}-2\right]\ge4\left(2\sqrt{2}-2\right)\Rightarrow AB\ge2\sqrt{2\sqrt{2}-2}\)Đẳng thức xảy ra \(\Leftrightarrow2\left(x_0+1\right)^4=1\Leftrightarrow x_0=-1\pm\frac{1}{\sqrt[4]{2}}\) c) Xét \(M\left(x_0;y_0\right)\in\left(C\right)\). Tiếp tuyến tại M vuông góc với tiệm cận xiên\(\Leftrightarrow y'\left(x\right)=-1\Leftrightarrow\frac{x^2_0+2x_0}{\left(x_0+1\right)^2}=-1\Leftrightarrow2x^2_0+4x_0+1=0\Leftrightarrow x_0=\frac{-2\pm\sqrt{2}}{2}\)Vậy \(M\left(\frac{-2\pm\sqrt{2}}{2};\pm\frac{3\sqrt{2}}{2}\right)\) 
4 tháng 11 2019

Đáp án DPhương trình hoành độ gaio điểm của đồ thị (C) và đường thẳng  

Gọi . Ta tính được khi m = 0

3 tháng 10 2019

Chọn C.

Giả sử thuộc đồ thị (C) (với a  ≠ 1)

Phương trình tiếp tuyến của đồ thị (C) tại M có dạng:

Tiếp tuyến này cắt đường tiệm cận đứng x = 1 và đường tiệm cận ngang y = 2 lần lượt tại 

Khi đó 

Dấu “=”xảy ra khi 

Vậy giá trị nhỏ nhất của PQ bằng  2 2

17 tháng 1 2019

20 tháng 7 2018

+ Gọi  M ( x 0 ;   2 + 3 x 0 - 1 ) ∈ C ,   x 0 ≠ 1 .

Phương trình tiếp tuyến tại M  có dạng

∆ :   y =   - 3 x 0 - 1 2 ( x - x 0 ) + 2 + 3 x 0 - 1

 

+ Giao điểm của ∆   với tiệm cận đứng là  A ( 1 ;   2 + 6 x 0 - 1 )

+ Giao điểm của ∆   với tiệm cận ngang là  B( 2x0-1; 2).

Ta có  S ∆ I A B = 1 2 I A . I B = 1 2 . 6 x 0 - 1 . 2 . x 0 - 1 = 2 . 3 = 6

Tam giác IAB vuông tại I có diện tích không đổi nên  chu vi tam giác IAB đạt giá trị nhỏ nhất khi

IA=IB 

 

+Với x 0 = 1 + 3   thì phương trình tiếp tuyến là ∆ :   y = - x + 3 + 2 3  . Suy ra

d O , ∆ = 3 + 2 3 2

+ Với   x 0 = 1 - 3 thì phương trình tiếp tuyến là  ∆ :   y = - x + 3 - 2 3 . Suy ra

d O , ∆ = - 3 + 2 3 2

Vậy khoảng cách lớn nhất là  3 + 2 3 2   gần với giá trị 5 nhất trong các đáp án.

Chọn D.

22 tháng 6 2017