K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2017

Hàm số bậc nhất. b) đk cần đồ thi cắt hai trục là m khác 0

với m khác ta có

A(0;2);B(-2/m;0)

Để AOB cân

\(\Delta_{AOB}\) luôn là Tam giác vuông Tại O mọi m => để AOB là tam giác cân => duy nhất OA=OB => |-2/m| =2 <=> |m|=1

29 tháng 5 2017

câu a: khi m= 2 => y=2x+2

y y=2x+2 x -1 2 0

với x=0=> y =2

với y=0 =>x -1

câu b : y = xm+2 cắt ox,oy lần lượt tại A,B mà tam giác OAB cân tại O nên OB=OA \(OA^2=OB^2\)

Y X 0 A B

Với x=0=>y=2 => A(0,2) => \(0A=\sqrt{0^2+2^2}=2\)

Với y=0=> x= \(x=\frac{-2}{m}\)nên \(B\left(\frac{-2}{m},0\right)\) ,\(OB=\sqrt{\frac{4}{m^2}+0^2}=\sqrt{\frac{4}{m^2}}\)

theo giả thiết OA=OB nên \(\sqrt{\frac{4}{m^2}}=\sqrt{4}\Leftrightarrow m^2=1\Leftrightarrow\orbr{\begin{cases}m=1\\m=-1\end{cases}}\)

NV
25 tháng 10 2021

Để ĐTHS cắt cả 2 trục tọa độ \(\Rightarrow m\ne0\)

Khi đó ta có: giao điểm với trục hoành: \(mx+2=0\Rightarrow x=-\dfrac{2}{m}\)

Giao điểm với trục tung: \(y=m.0+2=2\)

a. \(A\left(-\dfrac{2}{m};0\right)\Rightarrow OA=\left|x_A\right|=\left|\dfrac{2}{m}\right|\)

\(B\left(0;2\right)\Rightarrow OB=\left|y_B\right|=2\)

\(OA=OB\Rightarrow\left|\dfrac{2}{m}\right|=2\Rightarrow m=\pm1\)

b. \(C\left(-\dfrac{2}{m};0\right);D\left(0;2\right)\Rightarrow\left\{{}\begin{matrix}OC=\left|\dfrac{2}{m}\right|\\OD=2\end{matrix}\right.\)

\(tanC=\dfrac{OD}{OC}=\left|m\right|=2\Rightarrow m=\pm2\)

18 tháng 5 2022

undefined 

 

18 tháng 5 2022

undefined

9 tháng 8 2021

a, bạn tự vẽ nhé 

b, Để hàm số nghịch biến khi m < 0 

c, đths y = mx + 2m - 1 cắt trục tung tại điểm có tung độ bằng 3 

Thay x = 0 ; y = 3 ta được : \(2m-1=3\Leftrightarrow m=2\)

d, đths y = mx + 2m - 1 cắt trục hoành tại điểm có hoành độ bằng -3 

Thay x = -3 ; y = 0 ta được : \(-3m+2m-1=0\Leftrightarrow-m-1=0\Leftrightarrow m=-1\)

9 tháng 8 2021

bổ sung hộ mình nhé 

( dòng đầu tiên ) Để đths trên là hàm bậc nhất khi \(m\ne0\)

Bài 1 : Cho hàm số y = (m + 5)x+ 2m – 10 Với giá trị nào của m thì y là hàm số bậc nhấtVới giá trị nào của m thì hàm số đồng biến.Tìm m để đồ thị hàm số điqua điểm A(2; 3)Tìm m để đồ thị cắt trục tung tại điểm có tung độ bằng 9.Tìm m để đồ thị đi qua điểm 10 trên trục hoành .Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x -1Chứng minh đồ thị hàm số luôn đi...
Đọc tiếp

Bài 1 : Cho hàm số y = (m + 5)x+ 2m – 10 
Với giá trị nào của m thì y là hàm số bậc nhất
Với giá trị nào của m thì hàm số đồng biến.
Tìm m để đồ thị hàm số điqua điểm A(2; 3)
Tìm m để đồ thị cắt trục tung tại điểm có tung độ bằng 9.
Tìm m để đồ thị đi qua điểm 10 trên trục hoành .
Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x -1
Chứng minh đồ thị hàm số luôn đi qua 1 điểm cố định với mọi m.
Tìm m để khoảng cách từ O tới đồ thị hàm số là lớn nhất
Bài 2: Cho đường thẳng y=2mx +3-m-x (d) . Xác định m để:
Đường thẳng d qua gốc toạ độ 
Đường thẳng d song song với đường thẳng 2y- x =5
Đường thẳng d tạo với Ox một góc nhọn
Đường thẳng d tạo với Ox một góc tù
Đường thẳng d cắt Ox tại điểm có hoành độ 2 
Đường thẳng d cắt đồ thị Hs y= 2x – 3 tại một điểm có hoành độ là 2
Đường thẳng d cắt đồ thị Hs y= -x +7 tại một điểm có tung độ y = 4
Đường thẳng d đi qua giao điểm của hai đường thảng 2x -3y=-8 và y= -x+1
Bài 3: Cho hàm số y=( 2m-3).x+m-5
Vẽ đồ thị với m=6
Chứng minh họ đường thẳng luôn đi qua điểm cố định khi m thay đổi
Tìm m để đồ thị hàm số tạo với 2 trục toạ độ một tam giác vuông cân
Tìm m để đồ thị hàm số tạo với trục hoành một góc 45o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 135o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 30o , 60o
Tìm m để đồ thị hàm số cắt đường thẳng y = 3x-4 tại một điểm trên 0y 
Tìm m để đồ thị hàm số cắt đường thẳng y = -x-3 tại một điểm trên 0x 
Bài4 (Đề thi vào lớp 10 tỉnh Hải Dương năm 2000,2001) Cho hàm số y = (m -2)x + m + 3
a)Tìm điều kiện của m để hàm số luôn luôn nghịch biến .
b)Tìm điều kiện của m để đồ thị cắt trục hoành tại điểm có hoành độ bằng 3.
c)Tìm m để đồ thị hàm số y = -x + 2, y = 2x –1 và y = (m - 2)x + m + 3 đồng quy.
d)Tìm m để đồ thị hàm số tạo với trục

4
6 tháng 1 2019

Bài 1:

Đặt:  (d):  y = (m+5)x + 2m - 10

Để y là hàm số bậc nhất thì:  m + 5 # 0    <=>   m # -5

Để y là hàm số đồng biến thì: m + 5 > 0  <=>  m > -5

(d) đi qua A(2,3) nên ta có:

3 = (m+5).2 + 2m - 10

<=>  2m + 10 + 2m - 10 = 3

<=>  4m = 3

<=> m = 3/4

6 tháng 1 2019

(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:

9 = (m+5).0 + 2m - 10

<=> 2m - 10 = 9

<=>  2m = 19

<=> m = 19/2

(d) đi qua điểm 10 trên trục hoành nên ta có:

0 = (m+5).10 + 2m - 10

<=> 10m + 50 + 2m - 10 = 0

<=>  12m = -40

<=> m = -10/3

(d) // y = 2x - 1  nên ta có:

\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\)   <=>   \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\)  <=>  \(m=-3\)

18 tháng 11 2023

Bài 1:

a: Để hàm số y=(1-m)x+m+2 đồng biến trên R thì 1-m>0

=>-m>-1

=>m<1

b: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\\left(1-m\right)x+m+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\\left(1-m\right)x=-m-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{m+2}{m-1}\\y=0\end{matrix}\right.\Leftrightarrow OA=\left|\dfrac{m+2}{m-1}\right|\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=\left(1-m\right)x+m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\left(1-m\right)\cdot0+m+2=m+2\end{matrix}\right.\)

=>\(OB=\left|m+2\right|\)

Để ΔOAB cân tại O thì OA=OB

=>\(\dfrac{\left|m+2\right|}{\left|m-1\right|}=\left|m+2\right|\)

=>\(\left|m+2\right|\left(\dfrac{1}{\left|m-1\right|}-1\right)=0\)

=>\(\left[{}\begin{matrix}m+2=0\\\dfrac{1}{\left|m-1\right|}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-2\\m-1=1\\m-1=-1\end{matrix}\right.\)

=>\(m\in\left\{0;2;-2\right\}\)

Để tìm m để đồ thị hàm số cắt hai trục Ox và Oy tại A và B sao cho chu vi tam giác OAB là 3 + căn 5, ta cần xác định tọa độ của A và B.

Điểm A nằm trên trục Ox, nên tọa độ của A là (x_A, 0). Thay vào phương trình hàm số y = mx + 2, ta có:

0 = mx_A + 2
=> mx_A = -2
=> x_A = -2/m

Điểm B nằm trên trục Oy, nên tọa độ của B là (0, y_B). Thay vào phương trình hàm số y = mx + 2, ta có:

y_B = m*0 + 2
=> y_B = 2

Chu vi tam giác OAB được tính bằng công thức chu vi tam giác:

chu_vi = AB + OA + OB

Với OA = x_A và OB = y_B, ta có:

chu_vi = AB + x_A + y_B

chu_vi = AB + (-2/m) + 2

chu_vi = AB - (2/m) + 2

Theo đề bài, chu vi tam giác OAB là 3 + căn 5, nên ta có:

3 + căn 5 = AB - (2/m) + 2

căn 5 = AB - (2/m) + 1

AB = căn 5 + (2/m) - 1

Ta đã có tọa độ của A và B, và chu vi tam giác OAB. Giờ ta sẽ tính độ dài AB:

AB = căn((x_A - 0)^2 + (y_B - 0)^2)

AB = căn((-2/m)^2 + 2^2)

AB = căn(4/m^2 + 4)

AB = căn(4(1/m^2 + 1))

AB = 2căn(1/m^2 + 1)

So sánh với công thức đã tính được trước đó:

AB = căn 5 + (2/m) - 1

Ta có:

2căn(1/m^2 + 1) = căn 5 + (2/m) - 1

Bình phương cả hai vế của phương trình:

4(1/m^2 + 1) = 5 + 4/m^2 + 1 - 4/m

4/m^2 + 4 = 6 + 4/m^2 - 4/m

8/m^2 = 2 - 4/m

Nhân cả hai vế của phương trình cho m^2:

8 = 2m^2 - 4

2m^2 = 12

m^2 = 6

m = ±√6

Vậy, để đồ thị hàm số cắt hai trục Ox và Oy tại A và B sao cho chu vi tam giác OAB là 3 + căn 5, ta có hai giá trị của m: √6 và -√6.

8 tháng 8 2023

chắc đúng không bạn

27 tháng 12 2022

a, Hàm số đồng biến khi m - 2 > 0 => m > 2

b, Đồ thị hàm số y = ( m-2)x + m song song với y = -x - 1

⇔ m - 2 =  -1 ; m # -1=>  m = 1

với m = 1 thì đồ thị hàm số y = ( m-2)x + m có dạng y = -x + 1 và song song với đồ thị y = -x -1

c, Đồ thị hàm số y = (m-2)x + m cắt trục hoành tại điểm có tung độ bằng 0; 

nên y = 0 => (m-2)x + m = 0 => x = -m/(m-2) 

Đồ thị hàm số cắt trục Ox tại A(-\(\dfrac{m}{m-2}\); 0)

Độ dài đoạn OA là |-\(\dfrac{m}{m-2}\)|

Đồ thị hàm số cắt trục Oy tại điểm có hoành độ bằng 0 nên 

x=0; y = m 

Giao đồ thị với trục Oy là điểm B( 0;m)

Độ dài đoạn OB là |m|

Tam giác OAB cân ⇔ | -\(\dfrac{m}{m-2}\)| = |m|

                               \(\Leftrightarrow\) | \(\dfrac{m}{m-2}\)| =|m|

                                \(\Leftrightarrow\) |m-2| = 1 \(\Leftrightarrow\)  \(\left[{}\begin{matrix}m-2=1\\m-2=-1\end{matrix}\right.\) \(\Leftrightarrow\)  \(\left[{}\begin{matrix}m=3\\m=1\end{matrix}\right.\)

vậy với m \(\in\){ 1; 3} thì đồ thị hàm số cắt trục Ox, Oy theo thứ tự tại hai điểm A và B sao cho tam giác OAB cân tại O