Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện:
Từ đồ thị hàm số y=f(x) ta thấy phương trình f(x)=0 có nghiệm x=-3 (bội 2) và nghiệm đơn x = x 0 ∈ - 1 ; 0 nên ta viết lại f ( x ) = a x + 3 2 x - x 0
Khi đó
Dựa vào đồ thị ta cũng thấy, đường thẳng y=2 cắt đồ thị hàm số y=f(x) tại ba điểm phân biệt x=-1, x = x 1 ∈ - 3 ; - 1 , x = x 2 < - 3 nên ta viết lại
Khi đó
Dễ thấy x = x 0 ∈ - 1 ; 0 nên ta không xét giới hạn của hàm số tại điểm x 0
Ta có:
+) l i m x → 0 + g ( x ) = l i m x → 0 +
⇒ x = 0 là đường TCĐ của đồ thị hàm số y=g(x)
+)
⇒ Các đường thẳng x = - 3 , x = x 1 , x = x 2 đều là các đường tiệm cận đứng của đồ thị hàm số y=g(x)
Vậy đồ thị hàm số y=g(x) có tất cả 4 đường tiệm cận đứng.
Chọn đáp án D.
Đáp án là D
Từ BBT ta có
lim x → + ∞ y = − 1 ; lim x → − ∞ y = 1 do đó đồ thị hàm số có hai đường tiệm cận ngang là
y = 1; y =−1.
lim x → 1 − y = + ∞ ; lim x → 1 − y = − ∞ do đó đồ thị hàm số có một đường tiệm cận đứng là x =1. Vậy tổng số có 3 đường tiệm cận
Chọn đáp án C