K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
4 tháng 9 2021

ta có hàm số 

\(y=2\left(x^2-2mx+m^2\right)-\left(2m^2+m-5\right)\ge-\left(2m^2+m-5\right)\)

vậy \(-\left(2m^2+m-5\right)=5\Leftrightarrow2m^2+m=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=-\frac{1}{2}\end{cases}}\)

Vậy có hai giá trị của m 

24 tháng 9 2023

Tham khảo:

Đỉnh S có tọa độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 1}}{{2.2}} =  - \frac{1}{4};{y_S} = f( - \frac{1}{4}) = 2{\left( { - \frac{1}{4}} \right)^2} + \left( { - \frac{1}{4}} \right) + m = m - \frac{1}{8}\)

Ta có: \(a = 2 > 0\), hàm số có bảng biến thiên dạng:

Hàm số đạt giá trị nhỏ nhất bằng \(m - \frac{1}{8} = 5 \Leftrightarrow m = \frac{{41}}{8}.\)

Vậy \(m = \frac{{41}}{8}\) thì hàm số đạt giá trị nhỏ nhất bằng 5.

22 tháng 3 2021

b, \(\left\{{}\begin{matrix}x^2-2x-3\le0\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le3\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)

Yêu cầu bài toán thỏa mãn khi phương trình \(f\left(x\right)=x^2-2mx+m^2-9\ge0\) có nghiệm \(x\in\left[-1;3\right]\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-m^2+9=9>0,\forall m\\-1< m< 3\\f\left(-1\right)=m^2+2m-8\ge0\\f\left(3\right)=m^2-6m\ge0\end{matrix}\right.\)

\(\Leftrightarrow m\in[2;3)\cup(-1;0]\)

28 tháng 12 2018

Đáp án D

6 tháng 8 2018

Đáp án B