Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ điểm O, ‘‘phóng to’’ ba lần tam giác ABC, ta sẽ nhận được tam giác A’B’C’.
Hai đoạn thẳng AB và CD cắt nhau tại 0. Biết rằng OA = OC, OB = OD. Tứ giác ABCD là hình gì ? Vì sao
Ta có: OA = OC (gt)
⇒ ∆ OAC cân tại O
⇒ ∠ A 1 = ( 180 0 - ∠ (AOC) ) / 2 (tính chất tam giác cân) (1)
OB = OD (gt)
⇒ ∆ OBD cân tại O
⇒ ∠ B 1 = ( 180 0 - ∠ (BOD) )/2 (tính chất tam giác cân) (2)
∠ (AOC) = ∠ (BOD) (đối đỉnh) (3)
Từ (1), (2), (3) suy ra: ∠ A 1 = ∠ B 1
⇒ AC // BD (vì có cặp góc ở vị tri so le trong bằng nhau)
Suy ra: Tứ giác ACBD là hình thang
Ta có: AB = OA + OB
CD = OC + OD
Mà OA = OC, OB = OD
Suy ra: AB = CD
Vậy hình thang ABCD là hình thang cân.
Bạn ghi nhầm đề thì phải, tự nhiên ban đầu có BC+CB, chắc là BC+CD
Sử dụng BĐT tam giác cho các tam giác OAB, OBC, OCD, OAD ta có:
OA+OB>AB; OB+OC>BC; OC+OD>CD; OA+OD>AD
Cộng vế với vế ta được:
2(OA+OB+OC+OD)>AB+BC+CD+AD
\(\Rightarrow OA+OB+OC+OD>\dfrac{AB+BC+CD+AD}{2}\) (1)
Tương tự, sử dụng BĐT tam giác cho các tam giác ABC, BCD, CDA, DAB ta có:
AB+BC>AC=OA+OC
BC+CD>BD=OB+OD
CD+AD>AC=OA+OC
DA+AB>BD=OB+OD
Cộng vế với vế các BĐT trên ta được:
\(2\left(AB+BC+CD+AD\right)>2\left(OA+OB+OC+OD\right)\)
\(\Rightarrow AB+BC+CD+AD>OA+OB+OC+OD\) (2)
Từ (1) và (2) ta có đpcm
Hình bạn vẽ nha bạn.
Áp dụng bất đẳng thức tam giác, ta có:
\(AB< OA+OB\)
\(BC< OB+OC\)
\(CD< OC+OD\)
\(DA< OD+OA\)
Do đó: \(2\left(OA+OB+OC+OD\right)>AB+BC+CD+DA\)
Hay \(OA+OB+OC+OD>\dfrac{AB+BC+CD+DA}{2}\)(1)
Ta lại áp dụng bất đẳng thức tam giác:
\(AB+BC>AC\)
\(BC+CD>BD\)
\(CD+AD>AC\)
\(AB+AD>BD\)
Do đó: \(2\left(AB+BC+CD+DA\right)>2\left(AC+BD\right)\)
Hay \(AB+BC+CD+DA>OA+OB+OC+OD\)(2)
Từ (1) và (2) ta suy ra:
\(\dfrac{AB+BC+CD+DA}{2}< OA+OB+OC+OD< AB+BC+CD+DA\)
Bạn ghi sai cái đề chỗ \(\dfrac{AB+BC+CB+AD}{2}\) nha
Gọi BH là đường cao của ∆ABO
Ta có 2SAOB = OA . BH
Nhưng BH ≤ BO nên 2SAOB ≤ OA . OB
mà OA.OB
Do đó 2SAOB
Dấu “=” xảy ra OA OB và OA = OB
Chứng minh tương tự ta có:
2SBOC ; 2SCOD
2SAOD
Vậy 2S = 2(SAOB + SBOC + SCOD + SDOA) ≤
Hay 2S ≤ OA2 + OB2 + OC2 + OD2
Dấu bằng xẩy ra khi và chỉ khi OA = OB = OC = OD
và là hình vuông tâm O.
Từ điểm O, ‘‘thu nhỏ’’ hai lần tứ giác ABCD, ta sẽ nhận được tứ giác A’B’C’D’.