Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy hàm số có nghĩa với mọi số thực nên \(D = \mathbb{R}\)
b)
Điều kiện: \(2 - 3x \ge 0 \Leftrightarrow x \le \frac{2}{3}\)
Vậy tập xác định: \(S = \left( { - \infty ;\frac{2}{3}} \right]\)
c) Điều kiện: \(x + 1 \ne 0 \Leftrightarrow x \ne - 1\)
Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\)
d) Ta thấy hàm số có nghĩa với mọi \(x \in \mathbb{Q}\) và \(x \in \mathbb{R}\backslash \mathbb{Q}\) nên tập xác định: \(D = \mathbb{R}\).
Tham khảo:
Ta có:
Bất phương trình \(1 - 2x \le 0\) có nghiệm là \(x \ge \frac{1}{2}\) hay \(A = [\frac{1}{2};+\infty)\)
Bất phương trình \(x - 2 < 0\) có nghiệm là \(x < 2\) hay \(B = ( - \infty ;2)\)
Vậy \(A \cup B = \mathbb R\)
Vậy \(A \cap B = [\frac{1}{2};2)\)
a) \(A \cup B = \{ a;b;c;d;e;i;u\} \), \(A \cap B = \{ a;e\} \)
b) Phương trình \({x^2} + 2x - 3 = 0\) có hai nghiệm là 1 và -3, nên \(A = \{ 1; - 3\} \)
Phương trình \(B = \{ x \in \mathbb{R}|\;|x|\; = 1\} \) có hai nghiệm là 1 và -1, nên \(B = \{ 1; - 1\} \)
Từ đó, \(A \cup B = \{ 1; - 1; - 3\} \), \(A \cap B = \{ 1\} .\)
Phương trình \({x^2} - 5x - 6 = 0\) có hai nghiệm là -1 và 6, nên \(A = \{ - 1;6\} \)
Phương trình \({x^2} = 1\) có hai nghiệm là 1 và -1, nên \(B = \{ - 1;1\} \)
Do đó
\(\begin{array}{l}A \cap B = \{ - 1\} ,\\A \cup B = \{ - 1;1;6\} ,\\A\backslash B = \{ 6\} ,\\B\backslash A = \{ 1\} ,\end{array}\)
a) Phương trình \({x^2} - 2 = 0\) có hai nghiệm là \(\sqrt 2 \) và \( - \sqrt 2 \), nên \(A = \{ \sqrt 2 ; - \sqrt 2 \} \)
Tập hợp \(B = \{ x \in \mathbb{R}|2x - 1 < 0\} \) là tập hợp các số thực \(x < \frac{1}{2}\)
Từ đó \(A \cap B = \{ - \sqrt 2 \} .\)
b) \(A \cap B = \{ (x;y)|\;x,y \in \mathbb{R},y = 2x - 1,y = - x + 5\} \)
Tức là \(A \cap B\)là tập hợp các cặp số (x; y) thỏa mãn hệ phương trình: \(\left\{ \begin{array}{l}y = 2x - 1\\y = - x + 5\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}2x - 1 = - x + 5\\y = 2x - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x = 6\\y = 2x - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 3\end{array} \right.\)
Vậy \(A \cap B = \{ (2;3)\} .\)
c) A là tập hợp các hình thoi, B là tập hợp các hình chữ nhật.
\(A \cap B\) là tập hợp các hình vừa là hình chữ nhật vừa là hình thoi.
Một tứ giác bất kì thuộc \(A \cap B\) thì nó là hình chữ nhật và có 2 cạnh kề bằng nhau (hình vuông)
Do đó \(A \cap B\) là tập hợp các hình vuông.
\(C\cap B=[-5;a]\)
mà \(B=\left\{x\in R|-5\le x\le5\right\}\) có độ dài là \(\left|-5\right|+\left|5\right|=10\)
\(\Rightarrow C\cap B=[-5;a]\) có độ dài là \(5\) thì \(a=10:2-5=0\)
\(D\cap B=[b;5]\) có độ dài là 9 thì \(b=10:2-9=-4\)
Ta có: \(A = \left\{ {x \in \mathbb{Z}| - 2 \le x \le 3} \right\} = \{ - 2; - 1;0;1;2;3\} \)
Và \(B = \{ x \in \mathbb{R}|{x^2} - x - 6 = 0\} = \{ - 2;3\} \)
Khi đó:
Tập hợp \(A\,{\rm{\backslash }}\,B\) gồm các phần tử thuộc A mà không thuộc B. Vậy\(A\,{\rm{\backslash }}\,B = \{ - 1;0;1;2\} \).
Tập hợp \(B\,{\rm{\backslash }}\,A\) gồm các phần tử thuộc B mà không thuộc A. Vậy \(B\,{\rm{\backslash }}\,A = \emptyset \)
Tham khảo:
a) Tập hợp A là khoảng (-2;1) và được biểu diễn là:
b) Tập hợp B là đoạn [-3; 0] và được biểu diễn là:
c) Tập hợp B là nửa khoảng \(( - \infty ;1]\) và được biểu diễn là:
d) Tập hợp B là nửa khoảng \((-2; - \infty )\) và được biểu diễn là:
Hình 12a
Ta thấy các đường thẳng trên hình là \(y = 1;x = 2;y = - x + 1\)
Từ các phương trình trên thì ta chọn luôn là câu c mà không cần xét tiếp.
Hình 12b.
Ta thấy các đường thẳng trên hình là \(y = - 1;x = - 3;x + y = - 2\)
Từ các phương trình trên thì ta chọn luôn là câu a mà không cần xét tiếp
\(\begin{array}{l}A \cap B = \{ 0\} \\A \cup B = \mathbb{R}\end{array}\)