Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B\subset A\Leftrightarrow\left\{{}\begin{matrix}m-7\ge-4\\m\le3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ge3\\m\le3\end{matrix}\right.\)
\(\Leftrightarrow m=3\)
Để \(A\subset B\Rightarrow\left\{{}\begin{matrix}2m-1\ge-1\\2m+3\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ge0\\m\le-1\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
Để \(A\cap B=\varnothing\) \(\Rightarrow\left[{}\begin{matrix}2m+3\le-1\\2m-1\ge1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m\le-2\\m\ge1\end{matrix}\right.\)
\(B\backslash A=\left\{4;5\right\}\)
\(\Rightarrow C=\left\{4;5\right\};\left\{1;4;5\right\};\left\{2;4;5\right\};\left\{3;4;5\right\};\left\{1;2;4;5\right\};\left\{1;3;4;5\right\};\left\{2;3;4;5\right\};\left\{1;2;3;4;5\right\}\)
(Số tập C thỏa mãn đúng bằng số tập con của A)
ĐKXĐ: \(x\ge2m-1\)
Để hàm xác định trên đoạn đã cho \(\Rightarrow2m-1\le1\Rightarrow m\le1\)
Để Q có nghĩa \(\Leftrightarrow m\ge-3\)
\(P\backslash Q=\varnothing\Leftrightarrow P\subset Q\)
\(\Leftrightarrow m+1\ge7\Rightarrow m\ge6\)
Vậy \(m\ge6\)
Tập M có độ dài \(\left(2m+5\right)-\left(2m-1\right)=6\)
Tương tự tập N có độ dài bằng 6
\(\Rightarrow\) Hợp của 2 tập là đoạn có độ dài bằng 10 khi và chỉ khi giao của 2 tập có độ dài bằng 2
\(\Leftrightarrow\left[{}\begin{matrix}2m+5-\left(m+1\right)=2\\m+7-\left(2m-1\right)=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-2\\m=6\end{matrix}\right.\)