Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A hợp X=B
=>X={1;3;4;0}; X={1;3;4;2}; A={1;3;4;0;2}
=>Có 3 tập hợp X thỏa mãn yêu cầu
\(C_BA=\left\{2;3;4\right\}\)
Tập \(C_BA\) có \(2^3=8\) tập con nên có 8 tập X thỏa mãn
A=(-3;5] hợp [8;10] hợp [2;8)
=(-3;5) hợp [2;8) hợp [8;10]
=(-3;8) hợp [8;10]
=(-3;10]
B=[0;2] hợp (-vô cực;5] hợp (1;+vô cực)
=(-vô cực;5] hợp (1;+vô cực)
=(-vô cực;+vô cực)=R
C=[-4;7] hợp (0;10)
Vì (0;7] thuộc (0;10) nên [-4;7] hợp (0;10)=[-4;10)
D=(-vô cực;3] hợp (-5;+vô cực)
=(-5;3]
E=(3;+vô cực)\(-vô cực;1]
=(3;+vô cực)(Vì ko có phần tử nào có trong (3;+vô cực) nằm trong(-vô cực;1])
F=(1;3]\[0;4)=rỗng(Bởi vì (1;3] là tập con của [0;4))
\(B\backslash A=\left\{4;5\right\}\)
\(\Rightarrow C=\left\{4;5\right\};\left\{1;4;5\right\};\left\{2;4;5\right\};\left\{3;4;5\right\};\left\{1;2;4;5\right\};\left\{1;3;4;5\right\};\left\{2;3;4;5\right\};\left\{1;2;3;4;5\right\}\)
(Số tập C thỏa mãn đúng bằng số tập con của A)
a) A ∪ B = (-∞; 15)
A ∩ B = [-2; 3)
b) Để A ⊂ B thì:
m - 1 > -2 và m + 4 ≤ 3
*) m - 1 > -2
m > -2 + 1
m > -1
*) m + 4 ≤ 3
m ≤ 3 - 4
m ≤ -1
Vậy không tìm được m thỏa mãn đề bài
\(A = \left\{ {0;1;2;3;4;5;6} \right\}\)
\(\,B = \left\{ {1;2;3;6;7;8} \right\}\)
Vậy
\(A \cap B = \left\{ {1;2;3;6} \right\}\)
\(A \cup B = \left\{ {0;1;2;3;4;5;6;7;8} \right\} = \left\{ {x \in \mathbb{N}|\;x < 9} \right\}\)
\(A\;{\rm{\backslash }}\;B = \left\{ {0;4;5} \right\}\)
\(\left|x^2-4x+3\right|=x^2-4x+3\Leftrightarrow x^2-4x+3\ge0\)
\(\Rightarrow x\in(-\infty;1]\cup[3;+\infty)\)
\(B\backslash A=\left\{1;3;4\right\}\)
Tập X được tạo ra bằng cách lấy hợp của tập \(B\backslash A\) với các tập con của A
Mà tập A có \(2^2=4\) tập con nên có 4 tập X thỏa mãn