Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án: D
Nhìn vào hình vẽ ta thấy vùng 1 là tập hợp các phần tử thuộc A mà không thuộc B nên vùng 1 là A \ B;
Vùng 2 là tập hợp các phần tử vừa thuộc A vừa thuộc B nên vùng 2 là A ∩ B; Vùng 3 là tập hợp các phần tử thuộc B mà không thuộc A nên vùng 3 là B \ A; Vùng 4 là tập hợp các phần tử thuộc E mà không thuộc A; B nên vùng 4 là E \ (A ∪ B).
Vậy cả 4 phát biểu đều đúng
Đáp án: D
A ∩ = A nên vùng 1 là tập hợp A ∩ CEB
CEA \ B = E \ (A ∪ B) nên vùng 2 là tập hợp CEA \ B.
B ∩ CEA = B nên vùng 3 là tập hợp B ∩ CEA
Gọi \(S=\left\{\overline{abc}\right\}\)
a có 5 cách chọn
b có 5 cách chọn
c có 4 cách chọn
=>S có 5*5*4=100 số
Gọi \(\overline{abc}\) là số chia hết cho 5
TH1: c=5
=>a có 4 cách và b có 4 cách
=>Có 16 cách
TH2: c=0
=>a có 5 cách và b có 4 cách
=>Có 5+4=20 cách
=>Có 16+20=36(cách)
\(n\left(\Omega\right)=C^2_{100}\)
\(n\left(B\right)=C^2_{36}\)
=>\(P\left(B\right)=\dfrac{7}{55}\)
a) Số nguyên dương nhỏ hơn 100 luôn có 1 hoặc 2 chữ số nên ta có không gian mẫu của phép thử trên là: \(\Omega = \left\{ {1,2,3,4,5,...98,99} \right\}\)
b) Tập hợp biến cố A: “Số được chọn là số chính phương” là:
\(A = \left\{ {{a^2}\left| {a = 1,2,...,9} \right.} \right\}\)
c) Cứ 4 số thì có 1 số chia hết cho 4, số nhỏ nhất là 4 và lớn nhất là 96 nên số kết quả thuận lợi cho biến cố B là \(\dfrac{96-4}{4}+1=24\).
Vậy có 24 kết quả thuận lợi cho biến cố B: “Số được chọn chia hết cho 4”
\(a,\Omega=\left\{1;2;3;4;5;...;98;99\right\}\\ b,A=\left\{1;4;9;16;25;36;49;64;81\right\}\\c, B=\left\{4;8;16;20;24;...;92;96\right\}\\ Số.kết.quả.thuận.lợi.cho.B:\left(96-4\right):4+1=24\left(kết.quả\right)\)
A = {x < 20 | x thuộc N}
= {1 ; 2 ; 3 ; ... ; 19}
B = {x lẻ | x khác 0}
= {1 ; 3 ; 5 ; 7 ; ...}
\(A\subset N\)
\(B\subset N\)
A= {X<20|x thuộc N }
= {1;2;3...;19}
B= { x lẻ |x khác 0}
= { 1;3:5:7,...}
A€ N
B€ N
A = {x|xϵ N và x ≤ 7}
A = {0, 1, 2, 3, 4, 5, 6, 7}
B = {x|xϵƯ(21) và x > 0}
B = {1, 3, 7, 21}
=> A ∩ B = {1, 3, 7}
D