K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

Ta có:

     I là giao điểm của hai đường cao BM, CN trong tam giác ABC. Suy ra I là trực tâm của tam giác ABC. Vậy \(AI \bot BC\). (1)

     K là giao điểm của hai đường cao DQ, CP trong tam giác CED. Suy ra K là trực tâm của tam giác CED.

Vậy \(EK \bot CD\). (2)

Mà ba điểm B, C, D thẳng hàng. (3)

Từ (1), (2) và (3) suy ra: AI // EK. 

Bạn viết lại đề bài đi mik đọc không hiểu

a: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có

BC chung

\(\widehat{KBC}=\widehat{HCB}\)

Do đó: ΔKBC=ΔHCB

Suy ra: \(\widehat{KCB}=\widehat{HBC}\)

hay ΔIBC cân tại I

b: Xét ΔABI và ΔACI có

AB=AC

AI chung

BI=CI

Do đó: ΔABI=ΔACI

Suy ra: \(\widehat{BAI}=\widehat{CAI}\)

hay AI là tia phân giác của góc A

16 tháng 5 2020

Hai phân giác trong của hai \(\widehat{B}\) và \(\widehat{C}\)cắt nhau tại I nên I phải thuộc phân giác \(\widehat{A}\).

Từ D hạ DH, DK, DJ vuông góc lần lượt với AB, BC, AC

Ta có: DH = DK (do D thuộc phân giác ngoài của \(\widehat{B}\))

Tương tự: DK = DJ => DH = DJ

=> D thuộc phân giác góc A hay D thuộc AD. Vậy A, I, D thẳng hàng.