Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{1}{1^2}< \frac{1}{1.2};\frac{1}{2^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Leftrightarrow\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{50}< 1< 2\)
Vậy A < 2
\(\frac{1}{1^2}=1\)
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(...\)
\(\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(\Rightarrow A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A< 1+1-\frac{1}{50}\)
\(\Rightarrow A< 2-\frac{1}{50}< 2\)
Vậy \(A< 2\)
a: Xét ΔABC có \(\widehat{C}< \widehat{B}< \widehat{A}\)
nên AB<AC<BC
b: Xét ΔEBA có BA=BE
nên ΔBAE cân tại B
mà \(\widehat{ABE}=60^0\)
nên ΔBAE đều
=>BA=BE(1)
Xét ΔCAB vuông tại A có
\(\cos B=\dfrac{AB}{BC}\)
=>\(\dfrac{AB}{BC}=\dfrac{1}{2}\)
=>BA=1/2BC(2)
Từ (1) và (2) suy ra BE=1/2BC
=>E là trung điểm của BC
Ta có: ΔABC vuông tại A
mà AE là đường trung tuyến
nên AE=CE
c: Xét ΔCAB có
E là trung điểm của BC
EF//AB
Do đó: F là trung điểm của AC
d: Xét ΔCEA có
AI là đường trung tuyến
EF là đường trung tuyến
AI cắt EF tại G
Do đó: G là trọng tâm của ΔCAE
=>H là trung điểm của AE
Ta có: ΔEBA cân tại B
mà BH là đường trung tuyến
nên BH là đường cao
Đáp án C