Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong các khẳng định sau:
- Khẳng định c) là đúng.
- Khẳng định a) ; b) là sai.
Trước hết ta xác định B và K là hai đỉnh tương ứng. Sau đó từ AB = KD suy ra A vad D là hai đỉnh tương ứng. Vậy \(\Delta ABC=\Delta DKH\)
Ta có: ∠B = ∠K nên đỉnh B tương ứng với đỉnh K
AB = KD nên đỉnh D tương ứng với đỉnh A
= > đỉnh C tương ứng với đỉnh H
Vậy ∆ABC = ∆ DKH
Ta có \(\widehat{B}=\widehat{K}\) nên B, K là hai đỉnh tương ứng.
AB= KI nên A, I là hai đỉnh tương ứng
vậy \(\Delta\)ABC=\(\Delta\)IKH.
Ta có:góc B= góc K nên B,K là 2 đỉnh tương ứng
AB=KI nên A, I là 2 đỉnh tương ứng
Vậy tam giác ABC= tam giác IKH
Câu 1:
a) A = E ; đỉnh A đối với đinh E
B = D ; đỉnh B đối với đỉnh D
-> Hình tam giác ABC = hình tam giác EDF
b)AB = EF { A đối với E hoặc F }(1)
{ B đối với E hoặc F }
AC = FD { A đối với F hoặc D }
{ C đối với F hoặc D }
Ta có: => A phải đối với F
B phải đối với E -> hình tam giác ABC = hình tam giác FED
C đối với D
Vì \(\widehat A = \widehat E\), \(\widehat C = \widehat D\) nên đỉnh A tương ứng với đỉnh E, đỉnh C tương ứng với đỉnh D.
\( \Rightarrow \widehat B = \widehat F\) ( 2 góc tương ứng)
Do đó, \(\Delta{ABC}=\Delta{EFD}\)
\(\Rightarrow AB = DE;BC = EF;AC = DF\)( các cạnh tương ứng )
Gọi giao điểm của BM với AC; CM với AD lần lượt là D và E
Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó;ΔEBC=ΔDCB
Suy ra: \(\widehat{MCB}=\widehat{MBC}\)
hay ΔMBC cân tại M
=>\(\widehat{MBC}=\dfrac{180^0-140^0}{2}=20^0\)
=>\(\widehat{ACB}=\widehat{ABC}=70^0\)
hay \(\widehat{BAC}=40^0\)
Chọn A
A