K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2017

Giả sử G là trọng tâm tam giác ABC, ta sẽ chứng minh G' cũng là trọng tâm tam giác A'B'C'.
G là trọng tâm tam giác ABC nên: \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\).
Ta cần chứng minh: \(\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}=\overrightarrow{0}\).
Theo giả thiết:
\(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{AG}+\overrightarrow{GA'}+\overrightarrow{BG}+\overrightarrow{GB'}+\overrightarrow{CG}+\overrightarrow{GC'}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}+\left(\overrightarrow{AG}+\overrightarrow{BG}+\overrightarrow{CG}\right)=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}-\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}-\overrightarrow{0}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}=\overrightarrow{0}\)
Vậy G là trọng tâm tam giác A'B'C' hay hai tam giác ABC và A'B'C' có cùng trọng tâm.

30 tháng 3 2017

Giải bài 9 trang 28 sgk Hình học 10 | Để học tốt Toán 10

15 tháng 5 2017

Ta đã biết nếu G' là trọng tâm tam giác ABC thì:
\(\overrightarrow{G'A}+\overrightarrow{G'B}+\overrightarrow{G'C}=\overrightarrow{0}\).
Gỉa sử có điểm G thỏa mãn: \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\).
Ta sẽ chứng minh \(G\equiv G'\).
Thật vậy:
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\Leftrightarrow3\overrightarrow{GG'}+\overrightarrow{G'A}+\overrightarrow{G'B}+\overrightarrow{G'C}=\overrightarrow{0}\)
\(\Leftrightarrow3\overrightarrow{GG'}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{GG'}=\overrightarrow{0}\).
Vậy \(G\equiv G'\).

AH
Akai Haruma
Giáo viên
3 tháng 8 2019

Lời giải:
Bổ đề: Tam giác $ABC$ có trọng tâm $G$

\(\Leftrightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

Chứng minh:

* Chiều thuận:

Kéo dài $AG$ cắt $BC$ tại $M$ thì $M$ là trung điểm $BC$ nên $\overrightarrow{BM}+\overrightarrow{CM}=\overrightarrow{0}$

Ta có: \(\overrightarrow{GM}=\overrightarrow{GB}+\overrightarrow{BM};\overrightarrow{GM}=\overrightarrow{GC}+\overrightarrow{CM}\)

\(\Rightarrow 2\overrightarrow{GM}=\overrightarrow{GB}+\overrightarrow{BM}+\overrightarrow{GC}+\overrightarrow{CM}=\overrightarrow{GB}+\overrightarrow{GC}\)

Mà theo tính chất trọng tâm: \(-\overrightarrow{GA}=2\overrightarrow{GM}\)

\(\Rightarrow -\overrightarrow{GA}=\overrightarrow{GB}+\overrightarrow{GC}\) \(\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

* Chiều đảo:

Gọi $M,N$ là trung điểm của $BC,AC$

\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\Leftrightarrow \overrightarrow{GA}+(\overrightarrow{GM}+\overrightarrow{MB})+(\overrightarrow{GM}+\overrightarrow{MC})=\overrightarrow{0}\)

\(\Leftrightarrow \overrightarrow{GA}+2\overrightarrow{GM}=\overrightarrow{0}\Rightarrow \overrightarrow{GA}=-2\overrightarrow{GM}\) nên $G,A,M$ thẳng hàng.

Tương tự: $G,B,N$ thẳng hàng nên $G$ là trọng tâm tam giác $ABC$

Ta có đpcm.

----------------------------------------------

Áp dụng vào bài:

$G$ là trọng tâm của $ABC$ và $A'B'C'$

\(\Leftrightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}=\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}\)

\(\Leftrightarrow \overrightarrow{GA'}-\overrightarrow{GA}+\overrightarrow{GB'}-\overrightarrow{GB}+\overrightarrow{GC'}-\overrightarrow{GC}=\overrightarrow{0}\)

\(\Leftrightarrow \overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=\overrightarrow{0}\)

4 tháng 8 2019

Cách khác:

Gọi \(G,G'\)lần lượt là trọng tâm của \(\Delta ABC,\Delta A'B'C'\) ,ta có:

\(3\overrightarrow{GG'}=\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}\)

\(3\overrightarrow{GG'}=\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)+\left(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}\right)\)

\(G\) là trọng tâm của \(\Delta ABC\) \(\Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

\(\Rightarrow3\overrightarrow{GG'}=\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}\)

Để hai tam giác ABC và A'B'C' có trọng tâm trùng nhau \(\Rightarrow\overrightarrow{GG'}=\overrightarrow{0}\)

\(\Rightarrow3\overrightarrow{GG'}=\overrightarrow{0}\Leftrightarrow\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=\overrightarrow{0}\)(đpcm)

15 tháng 8 2018

1) đây nha : https://hoc24.vn/hoi-dap/question/637285.html

câu 2 cũng chả khác gì cả

15 tháng 5 2017

a) Ta có:
\(\overrightarrow{AB'}+\overrightarrow{AC'}=\overrightarrow{BC}+\overrightarrow{AB}+\overrightarrow{BC'}=\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}\)\(=\overrightarrow{AC}+\overrightarrow{CA}=\overrightarrow{0}\).
Vậy A là trung điểm của B'C'.
b)
A B C B' C' A'
Theo câu a ta chứng minh được A là trung điểm của B'C'.
Tương tự ta chứng minh được: B là trung điểm của A'C'; C là trung điểm của A'B'.
Từ đó suy ra ba đường thẳng AB', BB', CC' là ba đường trung tuyến của tam giác A'B'C' nên ba đường thẳng AA', BB', CC' đồng quy.

17 tháng 5 2017

A B C P N M
a)
Có: \(3\overrightarrow{OC}-\overrightarrow{OB}=3\left(\overrightarrow{OM}+\overrightarrow{MC}\right)-\left(\overrightarrow{OM}+\overrightarrow{MB}\right)\)
\(=2\overrightarrow{OM}+3\overrightarrow{MC}-\overrightarrow{MB}\)\(=2\overrightarrow{OM}+\overrightarrow{MB}-\overrightarrow{MB}=2\overrightarrow{OM}\). (Đpcm).
b)
Gọi G là trọng tâm tam giác ABC, ta chứng minh G cũng là trọng tâm tam giác MNP.
Ta có: \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\).
Ta cần chứng minh: \(\overrightarrow{GN}+\overrightarrow{GM}+\overrightarrow{GP}=\overrightarrow{0}\).
Thật vậy \(\overrightarrow{GN}+\overrightarrow{GM}+\overrightarrow{GP}=\overrightarrow{GC}+\overrightarrow{CN}+\overrightarrow{GB}+\overrightarrow{BM}+\overrightarrow{GA}+\overrightarrow{AP}\)
\(=\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)+\overrightarrow{CN}+\overrightarrow{BM}+\overrightarrow{AP}\)
\(=\overrightarrow{0}+\overrightarrow{CN}+\overrightarrow{BM}+\overrightarrow{AP}\)
\(=\dfrac{3}{4}\overrightarrow{CA}+\dfrac{3}{4}\overrightarrow{BC}+\dfrac{3}{4}\overrightarrow{AB}\)
\(=\dfrac{3}{4}\left(\overrightarrow{CA}+\overrightarrow{AB}\right)+\dfrac{3}{4}\overrightarrow{BC}\)
\(=\dfrac{3}{4}\overrightarrow{CB}+\dfrac{3}{4}\overrightarrow{BC}=\overrightarrow{0}\).
Vậy G cũng là trọng tâm tam giác MNP. (Đpcm).

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

\(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  = 3\overrightarrow {MG}  \Leftrightarrow \overrightarrow {MG}  + \overrightarrow {GA}  + \overrightarrow {MG}  + \overrightarrow {GB}  + \overrightarrow {MG}  + \overrightarrow {GC}  = 3\overrightarrow {MG} \)

\( \Leftrightarrow \left( {\overrightarrow {MG}  + \overrightarrow {MG}  + \overrightarrow {MG} } \right) + \left( {\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC} } \right) = 3\overrightarrow {MG} \)

\( \Leftrightarrow 3\overrightarrow {MG}  = 3\overrightarrow {MG} \) (đpcm) ( Vì G  là trọng tâm của tam giác ABC nên \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \))

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Ta có: \(\overrightarrow {OA}  = \overrightarrow {OG}  + \overrightarrow {GA} \); \(\overrightarrow {OB}  = \overrightarrow {OG}  + \overrightarrow {GB} \); \(\overrightarrow {OC}  = \overrightarrow {OG}  + \overrightarrow {GC} \)

\(\begin{array}{l} \Rightarrow \overrightarrow {OB}  + \overrightarrow {OA}  + \overrightarrow {OC}  = \overrightarrow {OG}  + \overrightarrow {GA}  + \overrightarrow {OG}  + \overrightarrow {GB}  + \overrightarrow {OG}  + \overrightarrow {GC} \\ \Leftrightarrow \overrightarrow {OB}  + \overrightarrow {OA}  + \overrightarrow {OC}  = 3\overrightarrow {OG}  + \left( {\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC} } \right)\end{array}\)

Do G là trọng tâm của tam giác ABC nên \(\overrightarrow {GB}  + \overrightarrow {GA}  + \overrightarrow {GC}  = \overrightarrow 0 \)

\(\begin{array}{l} \Rightarrow \overrightarrow {OB}  + \overrightarrow {OA}  + \overrightarrow {OC}  = 3\overrightarrow {OG}  + \overrightarrow 0 \\ \Leftrightarrow \overrightarrow {OB}  + \overrightarrow {OA}  + \overrightarrow {OC}  = 3\overrightarrow {OG} \end{array}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) \( AH \bot BC\) và \(BH \bot CA\)

\( \Rightarrow \left( {\overrightarrow {AH} ,\overrightarrow {BC} } \right) = {90^o} \Leftrightarrow \cos \left( {\overrightarrow {AH} ,\overrightarrow {BC} } \right) = 0\) . Do đó \(\overrightarrow {AH} .\overrightarrow {BC}  = \overrightarrow 0 \)

Tương tự suy ra \(\overrightarrow {BH} .\overrightarrow {CA}  = \overrightarrow 0 \).

b) Gọi H có tọa độ (x; y)

\( \Rightarrow \left\{ \begin{array}{l}\overrightarrow {AH}  = (x - ( - 1);y - 2) = (x + 1;y - 2)\\\overrightarrow {BH}  = (x - 8;y - ( - 1)) = (x - 8;y + 1)\end{array} \right.\)

Ta có: \(\overrightarrow {AH} .\overrightarrow {BC}  = \overrightarrow 0 \) và \(\overrightarrow {BC}  = (8 - 8;8 - ( - 1)) = (0;9)\)

\((x + 1).0 + (y - 2).9 = 0 \Leftrightarrow 9.(y - 2) = 0 \Leftrightarrow y = 2.\)

Lại có: \(\overrightarrow {BH} .\overrightarrow {CA}  = \overrightarrow 0 \) và \(\overrightarrow {CA}  = ( - 1 - 8;2 - 8) = ( - 9; - 6)\)

\(\begin{array}{l}(x - 8).( - 9) + (y + 1).( - 6) = 0\\ \Leftrightarrow  - 9x + 72 + 3.( - 6) = 0\\ \Leftrightarrow  - 9x + 54 = 0\\ \Leftrightarrow x = 6.\end{array}\)

Vậy H có tọa độ (6; 2)

c) Ta có: \(\overrightarrow {AB}  = (8 - ( - 1); - 1 - 2) = (9; - 3)\)\( \Rightarrow AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{9^2} + {{( - 3)}^2}}  = 3\sqrt {10} \)

Và  \(\overrightarrow {BC}  = (0;9) \Rightarrow BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{0^2} + {9^2}}  = 9\);

\(\overrightarrow {CA}  = ( - 9; - 6)\)\( \Rightarrow AC = \left| {\overrightarrow {CA} } \right| = \sqrt {{{( - 9)}^2} + {{( - 6)}^2}}  = 3\sqrt {13} .\)

Áp dụng định lí cosin cho tam giác ABC, ta có:

\(\cos \widehat A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{{\left( {3\sqrt {13} } \right)}^2} + {{\left( {3\sqrt {10} } \right)}^2} - {{\left( 9 \right)}^2}}}{{2.3\sqrt {13} .3\sqrt {10} }} \approx 0,614\)\( \Rightarrow \widehat A \approx 52,{125^o}\)

\(\cos \widehat B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}} = \frac{{{{\left( 9 \right)}^2} + {{\left( {3\sqrt {10} } \right)}^2} - {{\left( {3\sqrt {13} } \right)}^2}}}{{2.9.3\sqrt {10} }} = \frac{{\sqrt {10} }}{{10}}\)\( \Rightarrow \widehat B \approx 71,{565^o}\)

\( \Rightarrow \widehat C \approx 56,{31^o}\)

Vậy tam giác ABC có: \(a = 9;b = 3\sqrt {13} ;c = 3\sqrt {10} \); \(\widehat A \approx 52,{125^o};\widehat B \approx 71,{565^o};\widehat C \approx 56,{31^o}.\)