K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

a)  Nếu A′B′=AB thì tam giác có đồng dạng.

Vì A′B′=AB \( \Rightarrow \)A’C’=AC => B’C’=BC => \(\widehat A = \widehat {A'};\widehat B = \widehat {B'};\widehat C = \widehat {C'}\)

=> Hai tam giác đồng dạng

b) MN // BC ( M∈AB, N∈AC) => ΔAMN ∽ ΔABC 

=> \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\)

Mà \(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}}\)

=> \(\frac{{A'B'}}{{AM}} = \frac{{A'C'}}{{AN}} = \frac{{B'C'}}{{MN}}\)

- Có AM= A’B’ => A’C’=AN \( \Rightarrow \) B’C’=MN 

=>  ΔAMN = ΔA'B'C'

=>  ΔAMN ∽ ΔA'B'C'

Mà ΔAMN ∽ ΔABC 

=> ΔABC ∽ ΔA′B′C′ 

c) Nếu A'B' > AB thì tam giác A'B'C' có đồng dạng với tam giác ABC. Vì \(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}}\)

a: Xét ΔA'B'C' và ΔABC có 

A'B'/AB=A'C'/AC=B'C'/BC

Do đó: ΔA'B'C'\(\sim\)ΔABC

b: \(\dfrac{C_{A'B'C'}}{C_{ABC}}=\dfrac{A'B'}{AB}=2\)

25 tháng 4 2021

A) nhé 

25 tháng 4 2021

thanks

 

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Lời giải:

a) Ta thấy:

$\frac{4}{8}=\frac{5}{10}=\frac{6}{12}$ nên 2 tam giác đồng dạng theo TH c.c.c

b) Pitago: $A'C'=\sqrt{B'C'^2-A'B'^2}=\sqrt{16^2-9^2}=5\sqrt{7}$

Xét tam giác $ABC$ và $A'B'C'$ có:

$\widehat{A}=\widehat{A'}=90^0$

$\frac{AB}{AC}\neq \frac{A'B'}{A'C'}$

Do đó 2 tam giác không đồng dạng

a) Xét ΔAB'B vuông tại B' và ΔAC'C vuông tại C' có 

\(\widehat{BAB'}\) chung

Do đó: ΔAB'B\(\sim\)ΔAC'C(g-g)

Suy ra: \(\dfrac{AB'}{AC'}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AB'}{AC'}=1\)

Suy ra: AB'=AC'

Ta có: AC'=AB'

AB=AC

Do đó: \(\dfrac{AC'}{AB}=\dfrac{AB'}{AC}\)

Xét ΔAC'B' và ΔABC có 

\(\dfrac{AC'}{AB}=\dfrac{AB'}{AC}\)(cmt)

\(\widehat{C'AB'}\) chung

Do đó: ΔAC'B'\(\sim\)ΔABC(c-g-c)

18 tháng 2 2022

undefined

AB+BC+AC=18cm

nên AC=6cm

AB/A'B'=AC/A'C'=BC/B'C'=2

=>4/A'B'=6/A'C'=8/B'C'=2

=>A'B'=2; A'C'=3; B'C'=4