Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔA'B'C' và ΔABC có
A'B'/AB=A'C'/AC=B'C'/BC
Do đó: ΔA'B'C'\(\sim\)ΔABC
b: \(\dfrac{C_{A'B'C'}}{C_{ABC}}=\dfrac{A'B'}{AB}=2\)
Lời giải:
a) Ta thấy:
$\frac{4}{8}=\frac{5}{10}=\frac{6}{12}$ nên 2 tam giác đồng dạng theo TH c.c.c
b) Pitago: $A'C'=\sqrt{B'C'^2-A'B'^2}=\sqrt{16^2-9^2}=5\sqrt{7}$
Xét tam giác $ABC$ và $A'B'C'$ có:
$\widehat{A}=\widehat{A'}=90^0$
$\frac{AB}{AC}\neq \frac{A'B'}{A'C'}$
Do đó 2 tam giác không đồng dạng
a) Xét ΔAB'B vuông tại B' và ΔAC'C vuông tại C' có
\(\widehat{BAB'}\) chung
Do đó: ΔAB'B\(\sim\)ΔAC'C(g-g)
Suy ra: \(\dfrac{AB'}{AC'}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AB'}{AC'}=1\)
Suy ra: AB'=AC'
Ta có: AC'=AB'
AB=AC
Do đó: \(\dfrac{AC'}{AB}=\dfrac{AB'}{AC}\)
Xét ΔAC'B' và ΔABC có
\(\dfrac{AC'}{AB}=\dfrac{AB'}{AC}\)(cmt)
\(\widehat{C'AB'}\) chung
Do đó: ΔAC'B'\(\sim\)ΔABC(c-g-c)
AB+BC+AC=18cm
nên AC=6cm
AB/A'B'=AC/A'C'=BC/B'C'=2
=>4/A'B'=6/A'C'=8/B'C'=2
=>A'B'=2; A'C'=3; B'C'=4
a) Nếu A′B′=AB thì tam giác có đồng dạng.
Vì A′B′=AB \( \Rightarrow \)A’C’=AC => B’C’=BC => \(\widehat A = \widehat {A'};\widehat B = \widehat {B'};\widehat C = \widehat {C'}\)
=> Hai tam giác đồng dạng
b) MN // BC ( M∈AB, N∈AC) => ΔAMN ∽ ΔABC
=> \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\)
Mà \(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}}\)
=> \(\frac{{A'B'}}{{AM}} = \frac{{A'C'}}{{AN}} = \frac{{B'C'}}{{MN}}\)
- Có AM= A’B’ => A’C’=AN \( \Rightarrow \) B’C’=MN
=> ΔAMN = ΔA'B'C'
=> ΔAMN ∽ ΔA'B'C'
Mà ΔAMN ∽ ΔABC
=> ΔABC ∽ ΔA′B′C′
c) Nếu A'B' > AB thì tam giác A'B'C' có đồng dạng với tam giác ABC. Vì \(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}}\)