cho hai số x,y thỏa mãn:x+y=1. Tìm GTNN của biểu thức M=5x^2+y^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2023

x+y=1

=>x=1-y

M=5x^2+y^2

=5(1-y)^2+y^2

\(=5y^2-10y+5+y^2\)

\(=6y^2-10y+5\)

\(=6\left(y^2-\dfrac{5}{3}y+\dfrac{5}{6}\right)\)

\(=6\left(y^2-2\cdot y\cdot\dfrac{5}{6}+\dfrac{25}{36}+\dfrac{5}{36}\right)\)

\(=6\left(y-\dfrac{5}{6}\right)^2+\dfrac{5}{6}>=\dfrac{5}{6}\)

Dấu = xảy ra khi y=5/6

=>\(M_{min}=\dfrac{5}{6}\) khi y=5/6 và x=1/6

4 tháng 7 2016

Ta có 

x+y=1 => x=1-y

thay vào phương trình 

\(\Rightarrow M=5.\left(1-y\right)^2+y^2\)

\(\Rightarrow M=5.\left(1-2y+y^2\right)+y^2\)

\(\Rightarrow M=5-10y+5y^2+y^2\)

\(\Rightarrow M=6y^2-10y+5\)

\(\Rightarrow M=6\left(y^2-\frac{5}{3}y+\frac{5}{6}\right)\)

\(\Rightarrow M=6\left(y^2-2.\frac{5}{6}y+\frac{25}{36}-\frac{25}{36}+\frac{5}{6}\right)\)

\(\Rightarrow M=6\left[\left(y-\frac{5}{6}\right)^2+\frac{5}{36}\right]\)

\(\Rightarrow M=6\left(y-\frac{5}{6}\right)^2+\frac{5}{6}\ge\frac{5}{6}\)

Vậy \(M_{min}=\frac{5}{6}\Leftrightarrow\hept{\begin{cases}x+y=1\\y-\frac{5}{6}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1-y\\y=\frac{5}{6}\end{cases}}}\Leftrightarrow\hept{\begin{cases}x=1-\frac{5}{6}=\frac{1}{6}\\y=\frac{5}{6}\end{cases}}\)

T I C K chọn mình nha bạn cảm ơn chúc bạn học tốt

\(\)

3 tháng 4 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(P=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\ge\dfrac{\left(1+1\right)^2}{x^2+y^2+2xy}=\dfrac{2}{\left(x+y\right)^2}=2\left(x+y=1\right)\)

Đẳng thức xảy ra khi \(x=y=\dfrac{1}{2}\)

2 tháng 6 2018

OMG

11 tháng 5 2017

1 thách dám tích

17 tháng 5 2017

\(A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}+\frac{1}{2xy}\\ =\frac{1}{4}+\frac{1}{2xy}\ge\frac{1}{4}+\frac{1}{8}=\frac{3}{8}\)

Dấu = xảy ra khi x=y=2

12 tháng 2 2017

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\Rightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow\left(x+y\right)^2\le2.1=2\Rightarrow-\sqrt{2}\le\left(x+y\right)=A\le\sqrt{2}\)

21 tháng 2 2019

Dự đoán dấu "=" khi x = 2 ; y= 1

Áp dụng bđt Cô-si cho 3 số và bđt \(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\) ta được

\(P=2x^2+y^2+\frac{28}{x}+\frac{1}{y}\)

    \(=\left(\frac{7x^2}{4}+\frac{14}{x}+\frac{14}{x}\right)+\left(\frac{y^2}{2}+\frac{1}{2y}+\frac{1}{2y}\right)+\left(\frac{x^2}{4}+\frac{y^2}{2}\right)\)

    \(\ge3\sqrt[3]{\frac{7x^2.14.14}{4.x^2}}+3\sqrt[3]{\frac{y^2.1.1}{2.2y.2y}}+\frac{\left(x+y\right)^2}{4+2}\)

      \(=3.\sqrt[3]{\frac{7.14.14}{4}}+\frac{3}{\sqrt[3]{2^3}}+\frac{3^2}{6}=24\)

Dấu "=" khi x = 2 ; y = 1 

21 tháng 2 2019

Bài toán easy!

\(P=\left(2x^2+8\right)+\left(y^2+1\right)+\frac{28}{x}+\frac{1}{y}-9\)

Áp dụng BĐT AM-GM,ta có:

\(P\ge8x+2y+\frac{28}{x}+\frac{1}{y}-9\)

\(=\left(7x+\frac{28}{x}\right)+\left(y+\frac{1}{y}\right)+\left(x+y\right)-9\)

\(\ge2\sqrt{7x.\frac{28}{x}}+2\sqrt{y.\frac{1}{y}}+\left(x+y\right)-9\)

\(\ge28+2+3-9=24\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}2x^2=8\\y^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)

Vậy \(P_{min}=24\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)

http://lop10.com/tuyet-ky-bat-dang-thuc-cosi-2477/

Link này có những bài tương tự 

Học tốt!!!

25 tháng 12 2016

\(2P=2x^2+2y^2-2xy-2x+2y+2\)

= (x2 - 2xy + y2) + \(\frac{4}{3}\)(y - x) + \(\frac{4}{9}\)+ (x2 - \(\frac{2}{3}\)x + \(\frac{1}{9}\)) + (y2 + \(\frac{2}{3}\)y + \(\frac{1}{9}\)) + \(\frac{4}{3}\)

= (y - x + \(\frac{2}{3}\))2 + (x - \(\frac{1}{3}\))2 + (y + \(\frac{1}{3}\))2 + \(\frac{4}{3}\)\(\ge\frac{4}{3}\)

\(\Rightarrow P\ge\frac{2}{3}\)

Vậy GTNN là \(\frac{2}{3}\)đạt được khi x = \(\frac{1}{3}\); y = - \(\frac{1}{3}\)  

25 tháng 12 2016

Nhiều quá không muốn giải. Bạn chọn đi. Mình giúp bạn giải 1 câu (bạn thích câu nào mình giải câu đó cho ) :D