Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{y^3}{x^2+xy+y^2}+\frac{z^3}{y^2+zx+z^2}+\frac{x^3}{z^2+zx+x^2}\)
\(\Leftrightarrow P=\frac{y^4}{x^2y+xy^2+y^3}+\frac{z^4}{y^2z+z^2x+z^3}+\frac{x^4}{z^2x+zx^2+x^3}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^3+y^3+z^3+x^2y+x^2z+y^2x+y^2z+z^2x+z^2y}\)
\(\Leftrightarrow P\ge\frac{\left(x^2+y^2+z^2\right)^2}{\left(x+y+z\right)\left(x^2+y^2+z^2\right)}=\frac{x^2+y^2+z^2}{x+y+z}\ge3\)
Dấu "=" khi x=y=z=3
Ta có xy=2 => \(y=\frac{2}{x}\)
ta có : M = \(\frac{1}{x}+\frac{2}{y}+\frac{3}{2x+y}=\frac{1}{x}+x+\frac{3}{2x+\frac{2}{x}}+\frac{2}{\frac{2}{x}}-x\)= \(\left(x+\frac{1}{x}\right)+\frac{3}{2\left(\frac{1}{x}+x\right)}\)
Áp dụng BĐT AM - GM ta được :
M \(\ge2\sqrt{\frac{\left(\frac{1}{x}+x\right)3}{\left(\frac{1}{x}+x\right)2}}=2\sqrt{\frac{3}{2}}=\sqrt{6}\)
Dấu "="......
Vậy Min M = \(\sqrt{6}\) Khi ......
============
bấm đi bấm lại 2 lần , máy lỗi , phần tìm x,y bạn tự làm nhé
=========================
\(P=\dfrac{x^2+y^2+6}{x+y}=\dfrac{x^2+y^2+2xy+4}{x+y}=\dfrac{\left(x+y\right)^2+4}{x+y}=x+y+\dfrac{4}{x+y}\)
\(P\ge2\sqrt{\left(x+y\right).\dfrac{4}{x+y}}=4\)
\(P_{min}=4\) khi \(x=y=1\)