K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2019

Ta có : xy \(\le\)\(\frac{\left(x+y\right)^2}{4}\)hay xy \(\le\)1  ( 1 ) . Dấu " = " xảy ra \(\Leftrightarrow\)x = y = 1

\(2xy\left(x^2+y^2\right)\le\frac{\left(2xy+x^2+y^2\right)^2}{4}=\frac{\left(x+y\right)^4}{4}=4\)( 2 )

Dấu " = " xảy ra \(\Leftrightarrow\)x = y = 1

Nhân ( 1 ) với ( 2 ) ta được : \(2x^2y^2\left(x^2+y^2\right)\le4\)\(\Rightarrow\)\(x^2y^2\left(x^2+y^2\right)\le2\)

Dấu " = " xảy ra \(\Leftrightarrow\)x = y = 1

28 tháng 12 2019

vì trong 3 số x,y,z có ít nhất là 2 số cùng dấu

giả sử \(x,y\le0\)\(\Rightarrow z=-\left(x+y\right)\ge0\)

Mà \(-1\le x,y,z\le1\)nên \(x^2\le\left|x\right|;y^4\le\left|y\right|;z^6\le\left|z\right|\)

\(\Rightarrow x^2+y^4+z^6\le\left|x\right|+\left|y\right|+\left|z\right|=-x-y+z=-\left(x+y\right)+z=2z\le2\)

Dấu " = " xảy ra chẳng hạn x = 0 ; y = -1; z = 1

17 tháng 2 2019

thiếu đề bạn ạ

17 tháng 2 2019

đề đủ 100% mà bn

25 tháng 8 2023

Xét \(P=x^2+y^2+2x\left(y-1\right)+2y+1\) 

\(P=x^2+y^2+2xy-2x+2y+1\)

+) Nếu \(y>x\) thì \(2y-2x+1>0\). Do đó \(P>\left(x+y\right)^2\). Hơn nữa:

\(P< x^2+y^2+1+2xy+2x+2y\) \(=\left(x+y+1\right)^2\)

suy ra \(\left(x+y\right)^2< P< \left(x+y+1\right)^2\), vô lí vì P là SCP.

+) Nếu \(x>y\) thì \(2y-2x+1< 0\) nên \(P< \left(x+y\right)^2\)

Hơn nữa \(P>x^2+y^2+1+2xy-2x-2y\) \(=\left(x+y-1\right)^2\)

Suy ra \(\left(x+y-1\right)^2< P< \left(x+y\right)^2\), vô lí vì P là SCP.

Vậy \(x=y\) (đpcm)

(Cơ mà nếu thay \(x=y\) vào P thì \(P=4x^2+1\) lại không phải là SCP đâu)

 

10 tháng 10 2019

\(VT=x^3y^3\left(x^2+y^2\right)=\frac{1}{8}.2xy.2xy.2xy.\left(x^2+y^2\right)\)

\(\le\frac{1}{8}\left[\frac{\left(4xy+2xy+x^2+y^2\right)^4}{256}\right]\)(áp dụng BĐT AM-GM cho 4 số)

\(=\frac{1}{8}.\frac{\left[4xy+\left(x+y\right)^2\right]^4}{256}\le\frac{1}{8}.\frac{\left[2\left(x+y\right)^2\right]^4}{256}=2\)

Đẳng thức xảy ra khi x = y = 1

Ta có đpcm/