Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Từ đề bài có: \(x\left(x-1\right)\le0\Rightarrow x^2\le x\)
Tương tự hai BĐT còn lại và cộng theo vế suy ra:
\(M=x+y+z-3\ge x^2+y^2+z^2-3=-2\)
Đẳng thức xảy ra khi (x;y;z) = (0;0;1) và các hoán vị của nó
Is it true?
\(4\le\sqrt{x}+\sqrt{y}+\sqrt{xy}+1\le\sqrt{2\left(x+y\right)}+\frac{x+y}{2}+1\)
\(\Leftrightarrow\)\(8\le x+y+2\sqrt{x+y}\sqrt{2}+2=\left(\sqrt{x+y}+\sqrt{2}\right)^2\)
\(\Leftrightarrow\)\(\sqrt{x+y}+\sqrt{2}\ge\sqrt{8}\)
\(\Leftrightarrow\)\(x+y\ge\left(\sqrt{8}-\sqrt{2}\right)^2=2\)
\(\Rightarrow\)\(P=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\ge2\)
Dấu "=" xảy ra khi \(x=y=1\)
ta có
can x+1 >=0 voi moi x
can 6-x >=0 voi moi x
=> căn x+1 + căn 6-x >= 0
Q2=7+2\(\sqrt{\left(x+1\right)\left(6-x\right)}\)\(\ge\)7 => Q\(\ge\)\(\sqrt{7}\)
dấu bằng khi x=-1 hoặc x=6
Q2=7+2\(\sqrt{\left(x+1\right)\left(6-x\right)}\)\(\le\)7+x+1+6-x = 14 => Q\(\le\) \(\sqrt{14}\)
dấu bằng khi x+1 = 6-x <=> 2x =5 <=> x=2.5
Đề gốc là \(P=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}\)
\(\frac{P}{4}=\frac{x}{2.2\sqrt{y}}+\frac{y}{2.2\sqrt{z}}+\frac{z}{2.2\sqrt{x}}\)
Áp dụng BĐT Côsi:
\(2.2.\sqrt{x}\le x+2^2=x+4\)
\(\Rightarrow\frac{P}{4}\ge\frac{x}{y+4}+\frac{y}{z+4}+\frac{z}{x+4}=\frac{x^2}{xy+4x}+\frac{y^2}{yz+4y}+\frac{z^2}{zx+4z}\)
\(\ge\frac{\left(x+y+z\right)^2}{xy+yz+zx+4\left(x+y+z\right)}\ge\frac{\left(x+y+z\right)^2}{\frac{1}{3}\left(x+y+z\right)^2+4\left(x+y+z\right)}=\frac{3\left(x+y+z\right)}{\left(x+y+z\right)+12}\)
\(=3-\frac{36}{x+y+z+12}\ge3-\frac{36}{12+12}=\frac{3}{2}\)
\(\Rightarrow P\ge6\)
Dấu bằng xảy ra khi \(x=y=z=4\)
Tham khảo tại đây: Câu hỏi của dbrby - Toán lớp 10 | Học trực tuyến
Áp dụng bđt AM-GM ta có
\(\sqrt{3x\left(2x+y\right)}+\sqrt{3y\left(2y+x\right)}\le\frac{3x+2x+y}{2}+\frac{3y+2y+x}{2}=\frac{6\left(x+y\right)}{2}=3\left(x+y\right)\)
\(\Rightarrow P\ge\frac{x+y}{3\left(x+y\right)}=\frac{1}{3}\)
Dấu "=" xảy ra khi x=y
Sửa đề: \(x\geq 0; y\geq 0\)
Tìm min:
Áp dụng BĐT Bunhiacopxky:
\((x\sqrt{x}+y\sqrt{y})(\sqrt{x}+\sqrt{y})\geq (x+y)^2\)
\((x+y)(1+1)\geq (\sqrt{x}+\sqrt{y})^2\)
\(\Rightarrow (x\sqrt{x}+y\sqrt{y})(\sqrt{x}+\sqrt{y})\geq \left[\frac{(\sqrt{x}+\sqrt{y})^2}{2}\right]^2\)
\(\Leftrightarrow x\sqrt{x}+y\sqrt{y}\geq \frac{1}{4}\) (do \(\sqrt{x}+\sqrt{y}=1\) )
Vậy \(E_{\min}=\frac{1}{4}\Leftrightarrow x=y=\frac{1}{4}\)
----------------
Tìm max:
Vì \(\sqrt{x}+\sqrt{y}=1; \sqrt{x},\sqrt{y}\geq 0\) nên \(0\leq \sqrt{x}, \sqrt{y}\leq 1\)
\(\Rightarrow \left\{\begin{matrix} x\sqrt{x}\leq \sqrt{x}\\ y\sqrt{y}\leq \sqrt{y}\end{matrix}\right.\)
\(\Rightarrow E=x\sqrt{x}+y\sqrt{y}\leq \sqrt{x}+\sqrt{y}=1\)
Vậy \(E_{\max}=1\Leftrightarrow (x,y)=(1,0)\) và hoán vị.