Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Dễ thấy: \(\left\{{}\begin{matrix}x-\sqrt{x^2+2015}\ne0\\2y-\sqrt{4y^2+2015}\ne0\end{matrix}\right.\)
Ta có:
\(\left(x+\sqrt{x^2+2015}\right)\left(2y+\sqrt{4y^2+2015}\right)=2015\)
\(\Leftrightarrow\left(x+\sqrt{x^2+2015}\right)\left(\sqrt{x^2+2015}-x\right)\left(2y+\sqrt{4y^2+2015}\right)=2015\left(\sqrt{x^2+2015}-x\right)\)
\(\Leftrightarrow2015\left(2y+\sqrt{4y^2+2015}\right)=2015\left(\sqrt{x^2+2015}-x\right)\)
\(\Leftrightarrow2y+x=\sqrt{x^2+2015}-\sqrt{4y^2+2015}\left(1\right)\)
Tương tự ta có:
\(x+2y=\sqrt{4y^2+2015}-\sqrt{x^2+2015}\left(2\right)\)
Lấy (1) + (2) vế theo vế ta được:
\(2x+4y=0\)
\(\Leftrightarrow x=-2y\)
Thế vào B ta được:
\(B=\dfrac{\left(-2y\right)^2}{2}+4.\left(-2y\right)y+3y^2+\left(-2y\right)+3y+15\)
\(=-3y^2+y+15\)
\(=\dfrac{181}{12}-\left(\sqrt{3}y-\dfrac{1}{2\sqrt{3}}\right)^2\le\dfrac{181}{12}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
- \(B=\left(4x^2+3y\right)\left(4y^2+3x\right)+25xy=16x^2y^2+12\left(x^3+y^3\right)+34xy\)
\(=16x^2y^2+12\left(x+y\right)\left(x^2-xy+y^2\right)+34xy\)
\(=16x^2y^2+12\left[\left(x+y\right)^2-2xy\right]+22xy\)
\(=16x^2y^2-2xy+12\)
Đặt \(t=xy\) thì \(B=16t^2-2t+12=16\left(t-\frac{1}{16}\right)^2+\frac{191}{16}\ge\frac{191}{16}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}x+y=1\\xy=\frac{1}{16}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{2+\sqrt{3}}{4}\\y=\frac{2-\sqrt{3}}{4}\end{cases}}\) hoặc \(\hept{\begin{cases}x=\frac{2-\sqrt{3}}{4}\\y=\frac{2+\sqrt{3}}{4}\end{cases}}\)
Vậy min B \(=\frac{191}{16}\) khi \(\left(x;y\right)=\left(\frac{2+\sqrt{3}}{4};\frac{2-\sqrt{3}}{4}\right);\left(\frac{2-\sqrt{3}}{4};\frac{2+\sqrt{3}}{4}\right)\)
- Như trên ta có : \(B=16\left(xy-\frac{1}{16}\right)^2+\frac{191}{16}\)
Mặt khác, áp dụng BĐT Cauchy , ta có : \(1=x+y\ge2\sqrt{xy}\Rightarrow xy\le\frac{1}{4}\)
Suy ra : \(B\le16\left(\frac{1}{4}-\frac{1}{16}\right)^2+\frac{191}{16}=\frac{25}{2}\)
Đẳng thức xảy ra khi x = y = 1/2
Vậy max B = 25/2 khi (x;y) = (1/2;1/2)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=x^2+3xy+4y^2\ge4y^2+3y+1\)
\(=\left(4y^2+\frac{2.2y.3}{4}+\frac{9}{16}\right)+\frac{7}{16}\)
\(=\left(2y+\frac{3}{4}\right)^2+\frac{7}{16}\ge\frac{7}{16}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\dfrac{7x^2}{16}+\left(\dfrac{9x^2}{16}+3xy+4y^2\right)\)
\(A=\dfrac{7x^2}{16}+\left(\dfrac{3x}{4}+2y\right)^2\ge\dfrac{7x^2}{16}\ge\dfrac{7.1^2}{16}=\dfrac{7}{16}\)
\(A_{min}=\dfrac{7}{16}\) khi \(\left(x;y\right)=\left(1;-\dfrac{3}{8}\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn tham khảo tại đây:
Câu hỏi của hoangchau - Toán lớp 9 - Học toán với OnlineMath
Hoặc
Câu hỏi của Dang Quốc Hung - Toán lớp 8 - Học toán với OnlineMath
Áp dụng BĐT Cauchy - Schwarz ta có ;
\(M=\frac{1}{16x^2}+\frac{1}{4y^2}+\frac{1}{z^2}=\frac{\left(\frac{1}{4}\right)^2}{y^2}+\frac{\left(\frac{1}{2}\right)^2}{y^2}+\frac{1}{z^2}\ge\frac{\left(\frac{1}{4}+\frac{1}{2}+1\right)^2}{x^2+y^2+z^2}\)
hay \(M\ge\frac{49}{16}\)
Vậy \(M_{min}=\frac{49}{16}\)
Dấu " = " xảy ra khi \(\frac{1}{4x^2}=\frac{1}{2y^2}=\frac{1}{z^2}\)
hay
\(x=\sqrt{\frac{1}{7}};y=\sqrt{\frac{2}{7}};z=\sqrt{\frac{4}{7}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1. \(\hept{\begin{cases}x^2+2y^2=4x-1\\y^2+2x^2=4y-1\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x^2+2y^2\right)-\left(y^2+2x^2\right)=4x-1-\left(4y-1\right)\\\left(x^2+2y^2\right)+\left(y^2+2x^2\right)=4x-1+4y-1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}y^2-x^2=4x-4y\left(1\right)\\3\left(x^2+y^2\right)=4\left(x+y\right)-2\left(2\right)\end{cases}}\)
Từ ( 1 ) \(\Rightarrow\left(y-x\right)\left(x+y\right)-4\left(x-y\right)=0\Leftrightarrow\left(y-x\right)\left(x+y+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=y\\x+y=-4\end{cases}}\)
Với x = y thì thay vào ( 2 ), ta được : \(6x^2-8x+2=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{3}\end{cases}}\)
Với x + y = -4 thay vào ( 2 ), ta được : \(3\left[\left(x+y\right)^2-2xy\right]=4.\left(-4\right)-2\)
\(\Leftrightarrow-6xy=-66\Leftrightarrow xy=11\)
Ta được hệ phương trình : \(\hept{\begin{cases}x+y=-4\\xy=11\end{cases}}\) mà hệ phương trình này vô nghiệm
2. Ta cần chứng minh BĐT : \(a^3+b^3\ge ab\left(a+b\right)\) với a,b > 0
Thật vậy, xét hiệu :
\(a^3+b^3-ab\left(a+b\right)=a^2\left(a-b\right)+b^2\left(b-a\right)=\left(a-b\right)\left(a^2-b^2\right)=\left(a-b\right)^2\left(a+b\right)\)\(\ge\)0
Áp dụng BĐT trên, ta có : \(x^3+y^3\ge xy\left(x+y\right)\Leftrightarrow x^3+y^3+1\ge xy\left(x+y\right)+xyz=xy\left(x+y+z\right)\)
Tương tự : ....
\(\Rightarrow\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{x^3+z^3+1}\le\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{xz\left(x+y+z\right)}\)
\(=\frac{x+y+z}{xyz\left(x+y+z\right)}=\frac{1}{xyz}=1\)
Vậy GTLN của biểu thức là 1 khi x = y = z = 1