\(a+b=\sqrt{\vec{ab}}\) và  ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2015

Bạn thi Violympic nên chắc không cần lời giải: Kết quả:  a - b = 7 .(Nếu cần lời giải thì cứ nhắn tin)

14 tháng 8 2016

a) Ta có: \(a^2-1\le0;b^2-1\le0;c^2-1\le0\) 

\(\Rightarrow\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\le0\)

\(a^2+b^2+c^2\le1+a^2b^2+b^2c^2+c^2a^2-a^2b^2c^2\le1+a^2b^2+b^2c^2+c^2a^2\) ( vì \(abc\ge0\) )

Có \(b-1\le0\Rightarrow a^2b\sqrt{b}\left(b-1\right)\le0\Rightarrow a^2b^2\le a^2b\sqrt{b}\)

Tương tự: \(\hept{\begin{cases}b^2c^2\le b^2c\sqrt{c}\\c^2a^2\le c^2a\sqrt{a}\end{cases}\Rightarrow dpcm}\)

\(\frac{2a^2-2ac+c^2}{2b^2-2bc+c^2}=\frac{a-c}{b-c}\)

\(\Leftrightarrow2a^2b-2a^2c+ac^2-bc^2-2ab^2+2b^2c=0\)

\(\Leftrightarrow2a\left(ab-ac+\frac{c^2}{2}\right)-bc^2-2ab^2+2bc^2=b\left(2ac-c^2-2ab+2bc\right)=0\)(đúng)

=> đpcm

4 tháng 8 2019

Từ \(c^2+2\left(ab-bc-ac\right)=0.\)

\(\Rightarrow c^2+2ab-2bc-2ac=0\)

\(\Rightarrow\frac{c^2}{2}+ab-bc-ac=0\)

\(\Rightarrow bc=\frac{c^2}{2}+ab-ac\)

Có : \(2a\left(ab-ac+\frac{c^2}{2}\right)-bc^2-2ab^2+2bc^2\)

\(=2abc-bc^2-2ab^2+2bc^2\)

\(=-b\left(-2ac+c^2+2ab-2bc\right)\)

\(=-b\left[c^2+2\left(ab-bc-ac\right)\right]=-b.0=0\)\(\left(đpcm\right)\)

24 tháng 11 2019

Tiện tay chém trước vài bài dễ.

Bài 1:

\(VT=\Sigma_{cyc}\sqrt{\frac{a}{b+c}}=\Sigma_{cyc}\frac{a}{\sqrt{a\left(b+c\right)}}\ge\Sigma_{cyc}\frac{a}{\frac{a+b+c}{2}}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Nhưng dấu bằng không xảy ra nên ta có đpcm. (tui dùng cái kí hiệu tổng cho nó gọn thôi nha!)

Bài 2:

1) Thấy nó sao sao nên để tối nghĩ luôn

2) 

c) \(VT=\left(a-b+1\right)^2+\left(b-1\right)^2\ge0\)

Đẳng thức xảy ra khi a = 0; b = 1

24 tháng 11 2019

2b) \(VT=\left(a-2b+1\right)^2+\left(b-1\right)^2+1\ge1>0\)

Có đpcm

1 tháng 8 2019

\(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}\)

\(\Rightarrow\frac{acy-bcx}{c^2}=\frac{bcx-abz}{b^2}=\frac{abz-acy}{a^2}=\frac{0}{a^2+b^2+c^2}=0\)

\(\Rightarrow\hept{\begin{cases}ay-bx=0\\cx-az=0\\bz-cy=0\end{cases}}\)

\(\Rightarrow\left(ay-bx\right)^2+\left(cx-az\right)^2+\left(bz-ay\right)^2=0\)

\(\Rightarrow a^2y^2-2axby+b^2x^2+a^2z^2-2axcz+c^2x^2+b^2z^2-2bycz\)

\(+c^2y^2=0\)

\(\Rightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)

\(=a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)

\(\Rightarrow\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)

30 tháng 7 2019

\(A=\left(b+c\right)^2+b^2+c^2=2b^2+2c^2+2bc=2\left(b^2+bc+c^2\right)\) (tự hiểu nhé)

Mà \(a^2=2\left(a+c+1\right)\left(a+b-1\right)=2a^2+2\left(ab+bc+ca\right)+2\left(b-c\right)-2\)

\(\Leftrightarrow a^2+2a\left(b+c\right)+2bc-2=0\) (*)

\(\Leftrightarrow2bc=2-a^2-2a\left(b+c\right)=2-\left(b+c\right)^2+2\left(b+c\right)^2\) (mấy cái này là từ a + b + c =0 suy ra a = -(b+c) suy ra a2 = [-(b+c)]2 = (b+c)2 thôi!)

\(\Leftrightarrow\left(b+c\right)^2-2bc=-2\)

hay c2 + b2 = -2?? hay là mình làm sai nhì?

1 tháng 8 2019

\(a^2=2\left(a+c+1\right)\left(a+b-1\right)\)

\(\Leftrightarrow\left(b+c\right)^2=\left(b-1\right)\left(c+1\right)\)

\(\Leftrightarrow\left(b-1\right)^2+\left(c+1\right)^2=0\)

\(\Rightarrow a=0,b=1,c=-1\)

\(\Rightarrow A=2\)